New Correlations Including Hourly Horizontal Radiation for Predicting Indoor Thermal Environment

2011 ◽  
Vol 71-78 ◽  
pp. 2671-2674
Author(s):  
Sheng Xian Wei ◽  
Shi Mei Guo ◽  
Xi Jia He

Fanger’s PMV is the most famous thermal sensation index but it is too complex to be applied in practice. Besides, the PMV index does not include the effect of horizontal solar radiation on the indoor thermal environment. In order to obtain simple and applicable correlations with consideration of solar radiation, a one-year measurement has been conducted in a naturally ventilated residential room in Qujing Normal University of Yunnan province, China. Based on collected data, PMV indices are calculated by using Newton’s iterative method. The relationships of the PMV and the environmental parameters — outdoor air temperature, indoor mean air temperature, mean radiant temperature, wind velocity, relative humidity, and hourly horizontal solar radiation — have been studied by the multivariable regression techniques. Large numbers of correlations with high correlativity have been developed in the present paper. It is convenient to use them to evaluate and predict the indoor thermal environment in the natural ventilation buildings.

2012 ◽  
Vol 610-613 ◽  
pp. 2819-2822
Author(s):  
Fen E Hu ◽  
Fan Wang ◽  
Neng Bang Hou ◽  
Fei Xiang Chen

Fanger’s PMV is the most famous thermal sensation index but it is too complex to be applied in practice. Besides, the PMV index does not take into account the effect of the hourly beam and diffuse solar radiation absorbed by the room on the indoor thermal climate. In order to obtain applicable correlations with consideration of solar radiation, a one-year measurement has been carried out in a naturally ventilated residential room in Qujing Normal University of Yunnan province, China. Based on collected data, PMV indices are calculated by using Newton’s iterative method. The correlations of the PMV and the environmental parameters — outdoor air temperature, indoor mean air temperature, mean radiant temperature, wind velocity, relative humidity, and hourly beam and diffuse solar radiation — have been studied by using the multivariable regression techniques. Lots of correlations with high correlativity have been developed in this paper. It is convenient to use these results to predict the indoor thermal climate in the natural ventilation buildings in the subtropical plateau monsoon climate.


2012 ◽  
Vol 193-194 ◽  
pp. 231-234 ◽  
Author(s):  
Sheng Xian Wei ◽  
Qing Zhou ◽  
Shu Fen Tao ◽  
Guang Xue Chen

Fanger’s PMV is the most famous thermal sensation index but it is too complex to be applied in practice. Besides, the PMV index does not include the effect of hourly solar radiation on the indoor thermal climate. In order to obtain simple and applicable correlations with considerations of outdoor hourly solar radiation, a one-year measurement was performed in a naturally ventilated residential room in Qujing Normal University of Yunnan province, China. PMV indices are calculated by using Newton’s iterative method based on the collected data. Correlations of the PMV and the environmental parameters (outdoor air temperature, indoor air temperature, mean radiant temperature, wind velocity, relative humidity, hourly beam radiation and hourly diffuse radiation) have been developed by the multivariable regression technique. It is convenient to use them to predict the indoor thermal comfort in the subtropical plateau monsoon climate.


2014 ◽  
Vol 501-504 ◽  
pp. 2276-2281 ◽  
Author(s):  
Wei Hong Fu ◽  
Shi Jun You

The method of numerical simulation was adopted in this study to explore the size of the natural ventilation inlet opening, outdoor temperature and ambient wind speed and other environmental parameters to effect of the varied rules of thermal environment of the strawberry solar greenhouse. The variation of outdoor air temperature effected greatly to the indoor thermal environment, the average air velocity in the strawberry growing zoon within the greenhouse was rose initially and dropped tend to the steady with increasing outdoor air temperature. The average temperature in the strawberry growing zoon was decreased with increasing the outside wind speed. The average air velocity was increased gradually in the strawberry growing zoon within the greenhouse with increasing outdoor wind speed. The average velocity was reduced gradually toward to constant.


2016 ◽  
Vol 34 (4/5) ◽  
pp. 427-445 ◽  
Author(s):  
Baharuddin Hamzah ◽  
Muhammad Taufik Ishak ◽  
Syarif Beddu ◽  
Mohammad Yoenus Osman

Purpose The purpose of this paper is to analyse thermal comfort and the thermal environment in naturally ventilated classrooms. Specifically, the aims of the study were to identify the thermal environment and thermal comfort of respondents in naturally ventilated university classrooms and compare them with the ASHRAE and Indonesian National Standard (SNI); to check on whether the predicted mean vote (PMV) model is applicable or not for predicting the thermal comfort of occupants in naturally ventilated university classrooms; and to analyse the neutral temperature of occupants in the naturally ventilated university classrooms. Design/methodology/approach The study was carried out at the new campus of Faculty of Engineering, Hasanuddin University, Gowa campus. A number of field surveys, which measured thermal environments, namely, air temperature, mean radiant temperature (MRT), relative humidity, and air velocity, were carried out. The personal activity and clothing properties were also recorded. At the same time, respondents were asked to fill a questionnaire to obtain their thermal sensation votes (TSV) and thermal comfort votes (TCV), thermal preference, and thermal acceptance. A total of 118 respondents participated in the study. Before the survey was conducted, a brief explanation was provided to the participants to ensure that they understood the study objectives and also how to fill in the questionnaires. Findings The results indicated that the surveyed classrooms had higher thermal environments than those specified in the well-known ASHRAE standard and Indonesian National Standard (SNI). However, this condition did not make respondents feel uncomfortable because a large proportion of respondents voted within the comfort zone (+1, 0, and −1). The predictive mean vote using the PMV model was higher than the respondents’ votes either by TSV or by TCV. There was a huge difference between neutral temperature using operative temperature (To) and air temperature (Ta). This difference may have been because of the small value of MRT recorded in the measured classrooms. Originality/value The research shows that the use of the PMV model in predicting thermal comfort in the tropic region might be misleading. This is because PMV mostly overestimates the TSV and TCV of the respondents. People in the tropic region are more tolerant to a higher temperature. On the basis of this finding, there is a need to develop a new thermal comfort model for university classrooms that is particularly optimal for this tropical area.


2013 ◽  
Vol 805-806 ◽  
pp. 1620-1624 ◽  
Author(s):  
Wan Ying Qu

A thermal comfort field study was investigated in residential buildings of cold regions in transition season during which the indoor thermal environment conditions are measured, the thermal sensation value of the occupants is questioned and recorded. A seven-point thermal sensation scale was used to evaluate the thermal sensation. The statistical method was used to analyze the data and the conclusions are as follows in transition season: clothing increase in 0.1clo when the indoor air temperature is lowered by 1°C; and clothing will be a corresponding increase in 0.06clo when the outdoor air temperature is lowered by 1°C; clothing also varies with gender, age, weight and thermal history and other related; the measured thermal neutral temperature is 21.3°C; and the minimum accepted temperature is 11.4 °C in transition season in cold regions. Most people choose to change clothes, switch and other passive measures, and occasionally take active measures of heater, electric fans and others.


2021 ◽  
pp. 277-277
Author(s):  
Xiaozhou Wu ◽  
Genglin Liu ◽  
Jie Gao ◽  
Shuang Wu

A ceiling cooling (CC) system integrated with a mechanical ventilation system is an advanced HVAC system for the modern office building with glass curtain wall. In this paper, considering the influence of heat transfer of external envelope, the indoor thermal environment and human thermal comfort were objectively measured and subjectively evaluated in a ceiling cooling room with mixing ventilation (MV) or underfloor air distribution (UFAD). Indoor physical parameters and human skin temperatures were measured as the chilled ceiling surface temperature and supply air temperature were 17.1?C-17.6?C and 22.2?C - 22.6?C. Simultaneously, 16 subjects (8 males and 8 females) were selected to subjectively evaluate the thermal environment. The results showed that the difference between mean radiant temperature and air temperature in the occupied zone was 0.8?C with CC+MV and 1.2?C with CC+UFAD, and the indoor air velocity was 0.17m/s with CC+MV and 0.13m/s with CC+UFAD. In addition, the calculated and measured thermal sensation votes with CC+MV were all slightly less than those with CC+UFAD. Therefore, ventilation system type had a slight impact on the indoor thermal environment and human thermal comfort in the ceiling cooling room.


2011 ◽  
Vol 374-377 ◽  
pp. 66-69
Author(s):  
Zhi Sheng Li ◽  
Jia Wen Liao ◽  
Xu Hong Liu

In order to improve human thermal comfort of residential buildings in urban village, the study of indoor thermal environment is necessary. Three typical selected houses in Huangpu Village were taken as an example to study. After a seven-day field measurement under the condition of natural ventilation, thermal neutral temperature and PMV indices were calculated based on the collected data. It is shown that the PMV values of the houses vary from -0.5 to 2.1, and the acceptance rate differ significantly in different houses and human activities states. The parameters including outdoor air temperature, indoor air temperature and PMV were studied through the linear regression, and the results demonstrate that their correlation coefficients are high, and their relationships have been developed. The results of this work create a precedent for the indoor thermal environment design and control of urban village buildings in China.


2014 ◽  
Vol 672-674 ◽  
pp. 1665-1669 ◽  
Author(s):  
Iman Asadi ◽  
Ibrahim Hussein ◽  
Kumaran Palanisamy

Field study was carried out on the thermal conditions and thermal comfort of occupants in air conditioned buildings in Malaysia. The study was carried out in 10 staff offices and 6 student study areas of Universiti Tenaga Nasional (UNITEN) during October and November 2013, collecting a full set of objective physical measurements and subjective assessments through questionnaires. The measured environmental parameters were air temperature, relative humidity and air velocity. The subjective responses concern the judgment of the occupants about the thermal environment at the moment of measurements. The obtained results showed that most places are in acceptable and comfort zone according to Fanger’s predicted mean vote (PMV) model. The neutral air temperature obtained through linear regression analysis of thermal sensation vote (TSV) is 23.9°C for UNITEN. The result of this study demonstrates that the acceptability of thermal comfort among UNITEN occupant is about 78 %.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4530
Author(s):  
Youcef Bouzidi ◽  
Zoubayre El Akili ◽  
Antoine Gademer ◽  
Nacef Tazi ◽  
Adil Chahboun

This paper investigates adaptive thermal comfort during summer in medical residences that are located in the French city of Troyes and managed by the Association of Parents of Disabled Children (APEI). Thermal comfort in these buildings is evaluated using subjective measurements and objective physical parameters. The thermal sensations of respondents were determined by questionnaires, while thermal comfort was estimated using the predicted mean vote (PMV) model. Indoor environmental parameters (relative humidity, mean radiant temperature, air temperature, and air velocity) were measured using a thermal environment sensor during the summer period in July and August 2018. A good correlation was found between operative temperature, mean radiant temperature, and PMV. The neutral temperature was determined by linear regression analysis of the operative temperature and Fanger’s PMV model. The obtained neutral temperature is 23.7 °C. Based on the datasets and questionnaires, the adaptive coefficient α representing patients’ capacity to adapt to heat was found to be 1.261. A strong correlation was also observed between the sequential thermal index n(t) and the adaptive temperature. Finally, a new empirical model of adaptive temperature was developed using the data collected from a longitudinal survey in four residential buildings of APEI in summer, and the obtained adaptive temperature is 25.0 °C with upper and lower limits of 24.7 °C and 25.4 °C.


2022 ◽  
pp. 1420326X2110564
Author(s):  
Chuanmin Tai ◽  
Guansan Tian ◽  
Wenjun Lei

Condensation is a major issue in the safe operation of utility tunnels. To address the condensation problem, the indoor air temperature, relative humidity (RH) and surface temperature in an urban utility tunnel in Jining were continuously measured, and the condensation conditions were surveyed and analysed. The results indicated that under natural ventilation conditions, the air temperature in the comprehensive cabin varied from 23.4°C to 24.5°C, the RH fluctuated between 86.4% and 95.3%, and the corresponding air dew point temperature (DPT) remained in the range of 22.2°C–22.9°C. The surface temperature of the water supply pipeline ranged from 17.8°C to 18.5°C, which was far lower than the DPT in the tunnel, resulting in serious condensation. A water supply pipeline with an anti-condensation design was developed based on environmental test data. A 25-mm-thick rubber plastic sponge insulation layer was used to thermally insulate the water supply pipeline, preventing further dew condensation. Furthermore, mechanical ventilation had little effect on reducing the RH in the tunnel and may actually cause dew condensation; therefore, a ventilation control mode was proposed in this study. These results are expected to provide basic data for further research and reference for the safe management of utility tunnels.


Sign in / Sign up

Export Citation Format

Share Document