Quasi-Static Characteristics Analysis for Barge Bow Structure Based on Experimental and FEA Study

2015 ◽  
Vol 723 ◽  
pp. 86-89
Author(s):  
Yi Feng Mao ◽  
Wei Qing Liu ◽  
Hai Fang

In this paper, an experiment in a quasi-static conditions was carried out on barge bow model with its cross sections simplified. The characteristics of the bow structure were studied experimentally and Finite Element Analysis (FEA) was conducted to compare with experimental results. The experiment was performed by a compression and shear testing machine and the model was axially collapsed by a rigid board. The collapse mechanisms, load-displacement curve and mean crushing strength were investigated. The study showed that basic collapse mechanism of barge bow was clarified in participates with inner diaphragms. Moreover, the accuracy of FEA to estimate mean crushing force were validated by comparing with experimental results.

2011 ◽  
Vol 46 (8) ◽  
pp. 825-836 ◽  
Author(s):  
N L Pedersen ◽  
P Pedersen

Belleville springs or coned disc springs are commonly used in machine design. The geometric dimensions of the spring and the determination of non-linear force–displacement curve are regulated by different standards. However, the theory behind Belleville spring design standards is founded on a study published in 1936. Furthermore, the common spring design with cross-sections of uniform thickness poses problems in terms of non-uniformity of stress distribution. In view of this, non-linear three-dimensional finite element analyses of spring designs including uniform or variable thickness are carried out in this paper. Finite element results are compared with analytical predictions and critically analysed in terms of the effect of Poisson ratio, overall stiffness, and stress distribution in the spring. This is done in order to verify the range of validity of design standards. Finite element analysis emerges as a powerful and computationally cheap approach to assess the structural behaviour of Belleville springs regardless of their geometry and level of non-linearity.


Author(s):  
Qiang Gao ◽  
Liangmo Wang ◽  
Yuanlong Wang ◽  
Fuxiang Guo ◽  
Zunzhi Zhang

In this paper, a class of axisymmetric thin-walled tubes with two types of geometries (straight and tapered) and four kinds of cross-sections (square, rectangle, circle, ellipse) are considered as energy absorbing components under oblique impact loading. The crash behavior of these tubes are first investigated by nonlinear finite element analysis through LS-DYNA. It is found that the tapered tubes has the better crashworthiness performance than the straight ones under oblique impact regarding both specific energy absorption (SEA) and peak crushing force (PCF). Among the tapered tubes, the tapered ellipse tube (TET) has the best crashworthiness performance. Then by calculating the overall SEA considering load angle uncertainty effect, it is found that the weighting factors for different load angles are critical for evaluating the crashworthiness performance of the tubes.


2021 ◽  
pp. 002199832110595
Author(s):  
Nastaran Bahrami-Novin ◽  
Ehsan Mahdavi ◽  
Mahdi Shaban ◽  
Hashem Mazaheri

Corrugated sheets with optimized mechanical properties are crucial for lightweight design in industrial applications. This study considered and optimized a corrugated sheet with a sinusoidal profile to enhance elastic modulus, tensile-bending coupling, and weight reduction. For this aim, first, flat specimens consisting of E-glass woven fiber and epoxy resin were made by hand lay-up method, following ASTM D3039. The tensile test determined young’s modulus of flat samples. Afterward, two molds with supports were fabricated. The corrugated specimens were constructed and exposed to a standard tensile test. The finite element analysis was used to simulate the tensile test of corrugated samples. The numerical force-displacement curve is derived from numerical analysis and verified by experimental results. After that, two multi-objective optimization problems, mass-constraint and global optimization, were implemented. Analytical formulations were verified by numerical and experimental results and utilized for optimization purposes. The genetic algorithm was used to examine and confirm trade-off behavior between objective functions. The Pareto fronts diagrams for mentioned two multi-objective optimization problem were obtained. Finally, the optimum parameters are calculated by using the LINMAP (Linear Programming Technique for Multi-dimensional Analysis of Preference) method.


2008 ◽  
Vol 45 (01) ◽  
pp. 42-53
Author(s):  
Yasuhira Yamada ◽  
Hisayoshi Endo

The purpose of this paper is to investigate the collapse strength and the mechanism of the bulbous bow structure in case of an oblique collision. In this study, quasi-static experiments were conducted using two types of large-scale bulbous bow models using the scenario that a ship collides with another ship at oblique angle. One of the models is a prototype buffer bow adopting a transverse stiffening system, and the other model is a standard bow adopting a longitudinal stiffening system. Each model was collapsed by a thrusting rigid board while being subject to the combined action of compressive force and bending moment. Collapse mechanism, load-displacement curve, and energy absorption capability of the buffer bow structure were investigated as compared with those of standard bow structure. Nonlinear finite element analysis (FEA) corresponding to the experiments was also conducted, and fairly good agreement was achieved between FEA and the experiments. It is also found from these investigations that the buffer bow structure is expected to be efficient in reducing the risk of an oil spill, especially in case of oblique collision.


2017 ◽  
Vol 14 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Mohd. Reyaz-Ur-Rahim ◽  
P. K. Bharti ◽  
Afaque Umer

Abstract With the help of finite element analysis, this research paper deals with the energy absorption and collapse behavior with different corrugated section geometries of hollow tubes made of aluminum alloy 6060-T4. Literature available experimental data were used to validate the numerical models of the structures investigated. Based on the results available for symmetric crushing of circular tubes, models were developed to investigate corrugated thin-walled structures behavior. To study the collapse mechanism and energy absorbing ability in axial compression, the simulation was carried in ABAQUS /EXPLICIT code. In the simulation part, specimens were prepared and axially crushed to one-fourth length of the tube and the energy diagram of crushing force versus axial displacement is shown. The effect of various parameters such as pitch, mean diameter, corrugation, amplitude, the thickness is demonstrated with the help of diagrams. The overall result shows that the corrugated section geometry could be a good alternative to the conventional tubes.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3855
Author(s):  
Arturo Popoli ◽  
Leonardo Sandrolini ◽  
Andrea Cristofolini

In this paper, a strategy for reducing the electromagnetic interferences induced by power lines on metallic pipelines is proposed and numerically investigated. The study considers a set of steel conductors interposed between the power line and the pipeline. Different shapes of conductor cross sections and different magnetic permeabilities are considered, to identify the solution exhibiting the greatest mitigation efficiency for the same amount of material. The investigation is carried out by means of a quasi-3D finite element analysis. Results show that the main mechanism responsible for the mitigation is constituted by the currents induced in the screening conductors by the power line. Hence, a high magnetic permeability can have a detrimental effect since it reduces the skin depth to values below the size of the screening conductor. In this case, a reduction of the screening current and in the mitigation efficiency is observed. Nevertheless, the study shows that the use of strip-shaped screening conductors allows the employment of cheaper magnetic materials without compromising the mitigation efficacy of the screening conductors.


2019 ◽  
Vol 55 (11) ◽  
Author(s):  
C. S. Akondi ◽  
K. Bantawa ◽  
D. M. Manley ◽  
S. Abt ◽  
P. Achenbach ◽  
...  

Abstract.This work measured $ \mathrm{d}\sigma/\mathrm{d}\Omega$dσ/dΩ for neutral kaon photoproduction reactions from threshold up to a c.m. energy of 1855MeV, focussing specifically on the $ \gamma p\rightarrow K^0\Sigma^+$γp→K0Σ+, $ \gamma n\rightarrow K^0\Lambda$γn→K0Λ, and $ \gamma n\rightarrow K^0 \Sigma^0$γn→K0Σ0 reactions. Our results for $ \gamma n\rightarrow K^0 \Sigma^0$γn→K0Σ0 are the first-ever measurements for that reaction. These data will provide insight into the properties of $ N^{\ast}$N* resonances and, in particular, will lead to an improved knowledge about those states that couple only weakly to the $ \pi N$πN channel. Integrated cross sections were extracted by fitting the differential cross sections for each reaction as a series of Legendre polynomials and our results are compared with prior experimental results and theoretical predictions.


1996 ◽  
Vol 74 (7-8) ◽  
pp. 373-375 ◽  
Author(s):  
R. Hippler ◽  
S. Helms ◽  
U. Brinkmann ◽  
J. Deiwiks ◽  
H. Schneider ◽  
...  

Recent experimental results for the multiple ionization of argon by positron impact have been reanalysed. Absolute cross sections for the double and triple ionization of argon were obtained from measured ratios of double-to-single and triple-to-single ionization, using known cross sections for single ionization and for positronium formation. Distinct differences compared to similar results for electron impact are noted.


Author(s):  
Kevin O’Shea

Abstract The use of finite element analysis (FEA) in high frequency (20–40 kHz), high power ultrasonics to date has been limited. Of paramount importance to the performance of ultrasonic tooling (horns) is the accurate identification of pertinent modeshapes and frequencies. Ideally, the ultrasonic horn will vibrate in a purely axial mode with a uniform amplitude of vibration. However, spurious resonances can couple with this fundamental resonance and alter the axial vibration. This effect becomes more pronounced for ultrasonic tools with larger cross-sections. The current study examines a 4.5″ × 6″ cross-section titanium horn which is designed to resonate axially at 20 kHz. Modeshapes and frequencies from 17–23 kHz are examined experimentally and using finite element analysis. The effect of design variables — slot length, slot width, and number of slots — on modeshapes and frequency spacing is shown. An optimum configuration based on the finite element results is prescribed. The computed results are compared with actual prototype data. Excellent correlation between analytical and experimental data is found.


Sign in / Sign up

Export Citation Format

Share Document