Experimental Study of Cutting Forces in Micro End-Milling

2012 ◽  
Vol 500 ◽  
pp. 357-362 ◽  
Author(s):  
Xiu Bing Jing ◽  
Huai Zhong Li ◽  
Jun Wang ◽  
Jong Leng Liow

Micro-end-milling is an efficient and economical manufacturing operation that is capable of accurately producing high aspect ratio features and parts. It is important to study the cutting forces in micro-milling for the planning and control of the process. This paper presents an experimental study of the cutting forces in micro-end-milling of a 6160 aluminum alloy. The measured cutting forces are presented and discussed for different cutting conditions, such as various feeds per tooth, cutter diameters, and cutting speeds. It is found that the peak cutting forces increase with increasing cutting speed and feed rate. The effects of tool runout on the cutting forces were also analyzed based on the experimental results, from which the influences of feed rate and cutting speed are found to be obvious.

2015 ◽  
Vol 727-728 ◽  
pp. 354-357
Author(s):  
Mei Xia Yuan ◽  
Xi Bin Wang ◽  
Li Jiao ◽  
Yan Li

Micro-milling orthogonal experiment of micro plane was done in mesoscale. Probability statistics and multiple regression principle were used to establish the surface roughness prediction model about cutting speed, feed rate and cutting depth, and the significant test of regression equation was done. On the basis of successfully building the prediction model of surface roughness, the diagram of surface roughness and cutting parameters was intuitively built, and then the effect of the cutting speed, feed rate and cutting depth on the small structure surface roughness was obtained.


2015 ◽  
Vol 22 (1) ◽  
pp. 89-95 ◽  
Author(s):  
Erol Kiliçkap ◽  
Ahmet Yardimeden ◽  
Yahya Hışman Çelik

AbstractCarbon fiber-reinforced plastic (CFRP) composites are materials that are difficult to machine due to the anisotropic and heterogeneous properties of the material and poor surface quality, which can be seen during the machining process. The machining of these materials causes delamination and surface roughness owing to excessive cutting forces. This causes the material not to be used. The reduction of damage and surface roughness is an important aspect for product quality. Therefore, the experimental study carried out on milling of CFRP composite material is of great importance. End milling tests were performed at CNC milling vertical machining center. In the experiments, parameters considered for the end milling of CFRP were cutting speed, feed rate, and flute number of end mill. The results showed that damage, surface roughness, and cutting forces were affected by cutting parameters and flute number of end mill. The best machining conditions were achieved at low feed rate and four-flute end mill.


2012 ◽  
Vol 445 ◽  
pp. 62-67 ◽  
Author(s):  
J.B. Saedon ◽  
S.L. Soo ◽  
D.K. Aspinwall ◽  
A. Barnacle

The paper presents an experimental investigation into the slotting of hardened AISI D2 (~62HRC) tool steel using 0.5mm diameter coated (TiAlN) tungsten carbide (WC) end mills. SEM analysis of tool morphology and coating integrity was undertaken on all tools prior to testing. Tool wear details are given based on resulting cutter diameter and slot width reduction. In addition, cutting forces are also presented together with details of workpiece burr formation. A full factorial experimental design was used with variation of cutting speed, feed rate and depth of cut, with results evaluated using analysis of variance (ANOVA) techniques. Parameter levels were chosen based on microscale milling best practice and results from preliminary testing. Main effects plots and percentage contribution ratios (PCR) are included for the main factors. Cutting speed was shown to have the greatest effect on tool wear (33% PCR). When operating at 50m/min cutting speed with a feed rate of 8µm/rev and a depth of cut of 55µm, cutter diameter showed a reduction of up to 82µm for a 520mm cut length. SEM micrographs of tool wear highlighted chipping / fracture as the primary wear mode with adhered workpiece material causing further attritious wear when machining was continued up to 2.6m cut length. All tests produced burrs on the top edges of the slots which varied in size / width to a lesser or greater degree. Under the most severe operating conditions, burr width varied from approximately 50µm to more than 220µm over the 520mm cut length. Cutting forces in general were less than 12N up to test cessation.


2012 ◽  
Vol 498 ◽  
pp. 25-30 ◽  
Author(s):  
B. de Agustina ◽  
E.M. Rubio

In the aeronautical and aerospace industries there is a great demand of materials with high resistance and low weight such as the aluminium alloys for the production of different elements that conforms the airships and aerospace vehicles. In this work, an experimental study was carried out in order to analyse the influence of the cutting parameters (feed rate, cutting speed and type of tool) on the forces generated during dry turning tests of UNS A92024-T3 aluminium bars. The main influents factors on the forces were the feed rate and the interaction between type of tool and the spindle speed.


2007 ◽  
Vol 537-538 ◽  
pp. 695-700 ◽  
Author(s):  
Márton Takács ◽  
Balázs Verő

Miniature structures can be produced economically by micro end milling as single parts or parts in small and medium lot sizes. The micro end milling process has to be analyzed particularly for the purpose of applying a well controlled and repeatable process. There are many specific characteristics in the micrometric scale of dimensions, whose role is negligible at the conventional processing technologies. One of these special features of micro end milling is the observation that the set value of the feed rate per tooth generally differs from the thickness of the actual removed material layer. Feed rate per tooth is practically defined as the distance, which is run by the edge lengthwise of the groove during one revolution of the tool. Accordingly the feed rate per tooth corresponds to the thickness of the material layer removed by one edge of the tool. This correspondence exists at conventional manufacturing methods but not at micro end milling. This fact is attended by more special features of the micro end milling process, which are multiple cutting, different machining conditions of the edges and tool deflection. This paper introduces the results of improvement of my earlier research on this field [1]. An enhanced flowchart was constructed, which provides the calculation of the thickness of the actual removed material layer at micro end milling under all possible circumstances.


Author(s):  
Krishnaraj Vijayan ◽  
Samsudeen Sadham ◽  
Saikumar Sangeetha ◽  
Kuppan Palaniyandi ◽  
Redouane Zitoune

This paper investigates numerical and experimental study of end milling of titanium alloy Ti–6% Al–4% V using carbide insert based cutting tool. The experiments were carried out under dry cutting conditions. The cutting speeds selected for the experiments are 20,30,40,50 mmin–1. The feed rates used in the experiment were 0.02, 0.04, 0.06 and 0.08 mmrev–1, while depth of cut is kept constant at 1.0 mm. For conducting the experiments single insert based cutting tool is based. For a range of cutting speeds and feeds measurements of cutting force, surface roughness and cutting temperature have been recorded. From the experimental study it can be seen that cutting speed has the significant effect on temperature when compared to feed/tooth. Further it is also found that cutting speed of 30 m min−1 and feed rate of 0.02 mm rev−1 could be used for machining Ti alloy. Moreover the experimental and numerical cutting force values are compared.


2018 ◽  
Vol 14 (1) ◽  
pp. 115-121 ◽  
Author(s):  
Pun Krishna Kaway ◽  
Xueping Zhang

Titanium alloy, Ti6Al4V, has been widely used in aerospace, automotive, biomedical, and chemical industries due to its exceptional strength to weight ratio, high temperature performance, and corrosion resistance. However, machinability of Ti6Al4V is poor due to high strength at elevated temperatures, low modulus, and low thermal conductivity. Poor machinability of Ti6Al4V deteriorates the surface integrity of the machined surface. Poor surface integrity causes high machining cost, surface defects, initiate cracks, and premature failure of the machined surface. Thus, it is indispensable to obtain better surface integrity when machining titanium alloy Ti6Al4V. Cutting parameters such as cutting speed, feed rate, and depth of cut have significant effect on the surface integrity when machining titanium alloy Ti6Al4V. Hence, this study investigates surface integrity of Ti6Al4V by ball end milling at different cutting speeds, feed rates, and depth of cuts. Microstructure of subsurface is studied at different cutting speeds, feed rates, and depth of cuts. The results show that the depth of deformation of subsurface increases with increase in the cutting speed, feed rate, and depth of cut. Journal of the Institute of Engineering, 2018, 14(1): 115-121


2014 ◽  
Vol 493 ◽  
pp. 546-551 ◽  
Author(s):  
Safian Sharif ◽  
Habib Safari ◽  
Sudin Izman ◽  
Denni Kurniawan

The surface quality generated when high speed dry end milling (HSDEM) Ti-6Al-4V-ELI titanium alloy with coated and uncoated carbide tools were investigated. Evaluation was conducted using TiAlN+TiN coated and uncoated cemented carbide tools under different high cutting speeds and feed rates conditions. Surface roughness and cutting forces were measured when using new tools. The milled surface quality and corresponding alteration were characterized through electron microscopy. Within the investigated conditions high quality surface finish was obtained on the machined surface. Increasing cutting speed from 200 to 300 m/min during the process improved the surface finished particularly under lower feed rates. In term of generated surface quality, uncoated H25 grade carbide tools out performed coated F40M grade specifically at the higher cutting conditions. The main damages observed after HSDEM on the surface for all machining conditions contain redeposited materials, feed marks, and tool edge marks. Under both tested feed rates the resultant cutting force decreased by increasing the cutting speeds and uncoated carbide tools provide the lower cutting forces compared to coated types.


2012 ◽  
Vol 565 ◽  
pp. 558-563 ◽  
Author(s):  
Bing Wu ◽  
Huai Zhong Li ◽  
Jun Wang ◽  
Xiu Bing Jing

In micro milling, cutting parameters such as feed per tooth and cutting speed are found to have significant influence on cutting forces and surface quality. To address these issues, an experimental study of micro milling with three types of metal material (steel, brass and aluminium alloy) is conducted. The experiment setup and cutting conditions are described; the experiment results are presented with a discussion of the influence of various cutting parameters such as feed per tooth and tool diameter. These results are used to provide strategies to optimise cutting parameters and achieve better surface quality with the concern of tool diameter and material hardness when micro milling selected materials.


2016 ◽  
Vol 701 ◽  
pp. 200-204 ◽  
Author(s):  
Mohamad Sazali Said ◽  
Jaharah A. Ghani ◽  
Mohd Asri Selamat ◽  
Nurul Na'imy Wan ◽  
Hassan C.H. Che

Abstract. The purpose of this research is to determine the optimum machining parameter for Aluminium silicon alloy (AlSi) matrix composite, which has been reinforced with aluminium nitride (AlN), with three types of carbide inserts present. Experiments were conducted at various cutting speeds, feed rates and depths of cut, according to the Taguchi orthogonal array L27. The signal-to-noise (S/N) ratio and analysis of variance are applied to study the characteristic performance of cutting speeds, feed rates, depths of cut and types of tool in measuring the tool life during the milling operation. The analysis of wear was done using a Sometech SV-35 video microscope according to ISO 3686. Through Taguchi analysis, it is concluded that a combination of high feed rate, high depth of cut, low cutting speed and insert TiB2 give a longer tool life. Therefore, the cutting speed of 230 m/min, feed rate of 0.8 mm/tooth, depth of cut of 0.5 mm and type of insert of TiB2 were the optimum machining parameters. These optimum parameters will help the automotive industry to have a competitive machining operation from both economical and manufacturing perspectives.


Sign in / Sign up

Export Citation Format

Share Document