Research on Dynamic Parking Space Allocation Model in Closed Parking Lot

2015 ◽  
Vol 734 ◽  
pp. 435-439
Author(s):  
Qing Gang Wang

This paper investigated Dynamic Parking Space Allocation Model (DPSAM), which is one of functional modules of On-line Parking Space Reservation System (OPSRS). In the model, the parking spaces were regarded as a two-dimensional parking resource pool of temporal and spatial components. An integer programming formulation was presented with the objective function of minimizing the discontinuous parking resources. The experiment was executed to compare the allocation solutions of optimization model and random allocation with the indicators of parking resource vacancy rate, parking resource sunk rate and parking demand satisfaction rate. The result shows that optimization model can improve the utilization efficiency of parking lot and is valuable for the application of OPSRS.

2018 ◽  
Vol 11 (1) ◽  
pp. 120 ◽  
Author(s):  
Yifei Cai ◽  
Jun Chen ◽  
Chu Zhang ◽  
Bin Wang

Appertaining parking lots of public buildings provide a large proportion of parking supply in cities. However, these parking lots mainly serve the parking demands of public buildings, leading to a low utilization ratio of parking spaces. It is therefore required to implement a shared parking strategy for these parking lots. In this study, a parking space allocation method (PSAM) at the network level is proposed to allocate the parking demand to a parking lot and then the parking space. The users are divided into M-users (users of the buildings) and P-users (public users). The shared parking strategy is analyzed from the aspects of open window, parking fee, and ratio of reservation spaces. The users are allocated to a parking lot by a multinomial logit(MNL) model. Specifically, it is determined whether they can enter parking lot and which space they are allocated according to the specific rules. After all the users are allocated with a parking space, the rejection number of M-users, occupancy rate, and profits of each parking lot are collected and a NSGA-II (non-dominated sorting genetic algorithm II) algorithm is designed to determine the optimal strategy for each parking lot according to the above. Compared with the results of all-time all-space shared parking strategy, our method shows better performance in balancing the interests of all appertaining parking lots and protecting the interests of M-users while obtaining considerable profits for the parking lots.


2021 ◽  
Vol 11 (2) ◽  
pp. 855
Author(s):  
Mingkang Wu ◽  
Haobin Jiang ◽  
Chin-An Tan

As fully automated valet parking systems are being developed, there is a transition period during which both human-operated vehicles (HVs) and autonomous vehicles (AVs) are present in the same parking infrastructure. This paper addresses the problem of allocation of a parking space to an AV without conflicting with the parking space chosen by the driver of a HV. A comprehensive assessment of the key factors that affect the preference and choice of a driver for a parking space is established by the fuzzy comprehensive method. The algorithm then generates a ranking order of the available parking spaces to first predict the driver’s choice of parking space and then allocate a space for the AV. The Floyd algorithm of shortest distance is used to determine the route for the AV to reach its parking space. The proposed allocation and search algorithm is applied to the examples of a parking lot with three designed scenarios. It is shown that parking space can be reasonably allocated for AVs.


2021 ◽  
Vol 11 (18) ◽  
pp. 8680
Author(s):  
Guang Yang ◽  
Jun Chen ◽  
Kuan Lu ◽  
Chu Zhang

There are significant differences in the utilization efficiency of parking spaces in different spatial locations within the complex parking lots, which reduces the utilization efficiency of parking resources. For the above problem, a parking spaces supply demand characteristics indexes system was constructed. The Metro City complex was taken as an example, and its parking demand utilization characteristics were analyzed to judge the problem of parking spaces utilization. On this basis, a model of the dynamic allocation of parking spaces for parking spaces was constructed to improve drivers’ degree of degree of satisfaction and balance the occupancy rates for parking spaces in different zones. The simulation results show that after the implementation of the dynamic allocation of parking spaces, the differences of the parking spaces’ demand characteristic indexes between two different parking zones are significantly reduced. It was specifically observed that the differences between parking zones A and B in terms of turnover number, total parking time and average parking time were reduced from 2.24 times to 0.03 times, 1.3 h to 0.6 h and 2.2 h to 0.1 h, respectively, and the average interval time of parking spaces became smaller and more evenly distributed. It can be seen that this model can improve the overall utilization efficiency of the complex parking lot and drivers’ degrees of satisfaction.


2020 ◽  
Vol 12 (12) ◽  
pp. 4864
Author(s):  
Ziyao Zhao ◽  
Yi Zhang ◽  
Yi Zhang ◽  
Kaifeng Ji ◽  
He Qi

In recent years, with the rapid development of China’s automobile industry, the number of vehicles in China has been increasing steadily. Vehicles represent a convenient mode of travel, but the growth rate of the number of urban motor vehicles far exceeds the construction rate of parking facilities. The continuous improvement of parking allocation methods has always been key for ensuring sustainable city management. Thus, developing an efficient and dynamic parking distribution algorithm will be an important breakthrough to alleviate the urban parking shortage problem. However, the existing parking distribution models do not adequately consider the influence of real-time changes in parking demand and supply on parking space assignment. Therefore, this study proposed a method for dynamic parking allocation using parking demand predictions and a predictive control method. A neural-network-based dynamic parking distribution model was developed considering seven influencing factors: driving duration, walking distance, parking fee, traffic congestion, possibility of finding a parking space in the target parking lot and adjacent parking lot, and parking satisfaction degree. Considering whether the parking spaces in the targeted parking lots are shared or not, two allocation modes—sharing mode and non-sharing mode—were proposed and embedded into the model. At the experimental stage, a simulation case and a real-time case were performed to evaluate the developed models. The experimental results show that the dynamic parking distribution model based on neural networks can not only allocate parking spaces in real time but also improve the utilisation rate of different types of parking spaces. The performance score of the dynamic parking distribution model for a time interval of 2–20 min was maintained above 80%. In addition, the distribution performance of the sharing mode was better than that of the non-sharing mode and contributed to a better overall effectiveness. This model can effectively improve the utilisation rate of resources and the uniformity of distribution and can reduce the failure rate of parking; thus, it significantly contributes to more smart and sustainable urban parking management.


2021 ◽  
Vol 11 (14) ◽  
pp. 6401
Author(s):  
Kateryna Czerniachowska ◽  
Karina Sachpazidu-Wójcicka ◽  
Piotr Sulikowski ◽  
Marcin Hernes ◽  
Artur Rot

This paper discusses the problem of retailers’ profit maximization regarding displaying products on the planogram shelves, which may have different dimensions in each store but allocate the same product sets. We develop a mathematical model and a genetic algorithm for solving the shelf space allocation problem with the criteria of retailers’ profit maximization. The implemented program executes in a reasonable time. The quality of the genetic algorithm has been evaluated using the CPLEX solver. We determine four groups of constraints for the products that should be allocated on a shelf: shelf constraints, shelf type constraints, product constraints, and virtual segment constraints. The validity of the developed genetic algorithm has been checked on 25 retailing test cases. Computational results prove that the proposed approach allows for obtaining efficient results in short running time, and the developed complex shelf space allocation model, which considers multiple attributes of a shelf, segment, and product, as well as product capping and nesting allocation rule, is of high practical relevance. The proposed approach allows retailers to receive higher store profits with regard to the actual merchandising rules.


Transport ◽  
2020 ◽  
Vol 35 (5) ◽  
pp. 462-473
Author(s):  
Helena Brožová ◽  
Miroslav Růžička

Intelligent Parking Systems (IPS) allow customers to select a car park according to their preferences, rapidly park their vehicle without searching for the available parking space (place) or even book their place in advance avoiding queues. IPS provides the possibility to reduce the wastage of fuel (energy) while finding a parking place and consequently reduce harmful emissions. Some systems interact with in-vehicle navigation systems and provide users with information in real-time such as free places available at a given parking lot (car park), the location and parking fees. Few of these systems, however, provide information on the forecasted utilisation at specific time. This paper describes results of a traffic survey carried out at the parking lot of supermarket and the proposal of the model predicting real-time parking space availability based on these surveyed data. The proposed model is formulated as the non-homogenous Markov chains that are used as a tool for the forecasting of parking space availability. The transition matrices are calculated for different time periods, which allow for and include different drivers’ behaviour and expectations. The proposed forecasting model is adequate for potential use by IPS with the support of different communication means such as the internet, navigation systems (GPS, Galileo etc.) and personal communication services (mobile-phones).


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2793-2798 ◽  

Nowadays, smart parking guidance system is a crucial research for people’s convenience where the integrating concept of IoT that include hardware and software with the connection of internet for image or video processing technology is a powerful application which made up a complete smart parking system. The main objective of this research is to develop and analyze on a smart parking guidance system where current available system was compared to this new proposed system. Limited parking space has become serious issue since the number of Malaysia’s populations are using car keep increasing. Some of the big companies, shopping malls and other public facilities already deployed a smart parking system on their building. However, there are still a lot of buildings that do not own it because the system required a lot of investment, where the huge parking areas need higher cost to install sensors on each parking lot available and cameras are costly and lower in reliability. The proposed smart parking guidance system in this research was depending on a 360° camera that was modified on Raspberry Pi camera module and 360o lens that process with De-Warping techniques for the normal view rather than 360-degree view and Haar-Cascade classifier. The image and video processing was done by Open CV and python program to detect the available parking space and cloud firebase was used to update data where users can access the parking space availability by android mobile phone specifically at a closed parking space. A single 360°camera was replaced several sensors and cameras which were implemented on traditional parking guidance system. In the end of the paper, it is proved that prototype based smart parking is the convenient way to find the parking space availability.


Sign in / Sign up

Export Citation Format

Share Document