Design and Application of the Similarity Measure Simulation Applied in Project Portfolio Allocating

2015 ◽  
Vol 740 ◽  
pp. 952-956
Author(s):  
Li Biao Bai ◽  
Si Jun Bai ◽  
Yun Tao Guo

Starting with synergetics and systems engineering theory, this paper proposes a model for measuring the similarity among allocated modules of Project Portfolio Allocation at the level of project. Utilizing concepts like order parameter of fit, good-of-fit for Project Portfolio Allocation (PPA) and similarity among allocated modules, this paper uses the value of similarity among allocated modules of PPA to reflect the similarity among allocated module which provides a useful analytical methods for project portfolio allocation management in large state-owned firms. Finally, the effectiveness and feasibility of the proposed model is demonstrated and validated by a case study.

2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Farshad Faezy Razi ◽  
Abbas Toloie Eshlaghy ◽  
Jamshid Nazemi ◽  
Mahmood Alborzi ◽  
Alireza Pourebrahimi

The problem of selection and the best option are the main subject of operation research science in decision-making theory. Selection is a process that scrutinizes and investigates several quantitative and qualitative, and most often incompatible, factors. One of the most fundamental management issues in multicriteria selection literature is the multicriteria adoption of the projects portfolio. In such decision-making condition, manager is seeking for the best combination to build up a portfolio among the existing projects. In the present paper, KOHONEN algorithm was first employed to build up a portfolio of the projects. Next, each portfolio was evaluated using grey relational analysis (GRA) and then scheduled risk of the project was predicted using Mamdani fuzzy inference method. Finally, the multiobjective biogeography-based optimization algorithm was utilized for drawing risk and rank Pareto analysis. A case study is used concurrently to show the efficiency of the proposed model.


2010 ◽  
Author(s):  
William Albery ◽  
Raymond L. Robb ◽  
Lee Anderson
Keyword(s):  

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Tinggui Chen ◽  
Shiwen Wu ◽  
Jianjun Yang ◽  
Guodong Cong ◽  
Gongfa Li

It is common that many roads in disaster areas are damaged and obstructed after sudden-onset disasters. The phenomenon often comes with escalated traffic deterioration that raises the time and cost of emergency supply scheduling. Fortunately, repairing road network will shorten the time of in-transit distribution. In this paper, according to the characteristics of emergency supplies distribution, an emergency supply scheduling model based on multiple warehouses and stricken locations is constructed to deal with the failure of part of road networks in the early postdisaster phase. The detailed process is as follows. When part of the road networks fail, we firstly determine whether to repair the damaged road networks, and then a model of reliable emergency supply scheduling based on bi-level programming is proposed. Subsequently, an improved artificial bee colony algorithm is presented to solve the problem mentioned above. Finally, through a case study, the effectiveness and efficiency of the proposed model and algorithm are verified.


2021 ◽  
Vol 3 (2) ◽  
pp. 161-176
Author(s):  
Kellie Schneider ◽  
Diana Cuy Castellanos ◽  
Felix Fernando ◽  
Jeanne A. Holcomb

Food deserts, areas in which it is difficult to obtain affordable, nutritious food, are especially problematic in low-income neighbourhoods. One model for addressing food hardship and unemployment issues within low-income food deserts is a cooperative grocery store. Through the cooperative model, the grocery store can serve as a cornerstone to address socio-economic marginalisation of low-income neighbourhoods and improve the health and well-being of its residents. It is important for communities and policymakers to be able to assess the effectiveness of these types of endeavours beyond traditional economic factors such as profitability. This article uses a systems engineering approach to develop a framework for measuring the holistic impact of a cooperative grocery store on community health and well-being. This framework encompasses values that characterise the relationship between food retail, economic viability and social equality. We develop a dashboard to display the key metrics for measuring the economic, social and environmental indicators that reflect a grocery store’s social impact. We demonstrate the usefulness of the framework through a case study of a full-service cooperative grocery store that is planned within the city of Dayton, OH.


2021 ◽  
Vol 11 (9) ◽  
pp. 4298
Author(s):  
Alissa Kain ◽  
Douglas L. Van Bossuyt ◽  
Anthony Pollman

Military bases perform important national security missions. In order to perform these missions, specific electrical energy loads must have continuous, uninterrupted power even during terrorist attacks, adversary action, natural disasters, and other threats of specific interest to the military. While many global military bases have established microgrids that can maintain base operations and power critical loads during grid disconnect events where outside power is unavailable, many potential threats can cause microgrids to fail and shed critical loads. Nanogrids are of specific interest because they have the potential to protect individual critical loads in the event of microgrid failure. We present a systems engineering methodology that analyzes potential nanogrid configurations to understand which configurations may improve energy resilience and by how much for critical loads from a national security perspective. This then allows targeted deployment of nanogrids within existing microgrid infrastructures. A case study of a small military base with an existing microgrid is presented to demonstrate the potential of the methodology to help base energy managers understand which options are preferable and justify implementing nanogrids to improve energy resilience.


2021 ◽  
Vol 13 (11) ◽  
pp. 6109
Author(s):  
Joanne Lee Picknoll ◽  
Pieter Poot ◽  
Michael Renton

Habitat loss has reduced the available resources for apiarists and is a key driver of poor colony health, colony loss, and reduced honey yields. The biggest challenge for apiarists in the future will be meeting increasing demands for pollination services, honey, and other bee products with limited resources. Targeted landscape restoration focusing on high-value or high-yielding forage could ensure adequate floral resources are available to sustain the growing industry. Tools are currently needed to evaluate the likely productivity of potential sites for restoration and inform decisions about plant selections and arrangements and hive stocking rates, movements, and placements. We propose a new approach for designing sites for apiculture, centred on a model of honey production that predicts how changes to plant and hive decisions affect the resource supply, potential for bees to collect resources, consumption of resources by the colonies, and subsequently, amount of honey that may be produced. The proposed model is discussed with reference to existing models, and data input requirements are discussed with reference to an Australian case study area. We conclude that no existing model exactly meets the requirements of our proposed approach, but components of several existing models could be combined to achieve these needs.


Author(s):  
Shorya Awtar ◽  
Edip Sevincer

Over-constraint is an important concern in mechanism design because it can lead to a loss in desired mobility. In distributed-compliance flexure mechanisms, this problem is alleviated due to the phenomenon of elastic averaging, thus enabling performance-enhancing geometric arrangements that are otherwise unrealizable. The principle of elastic averaging is illustrated in this paper by means of a multi-beam parallelogram flexure mechanism. In a lumped-compliance configuration, this mechanism is prone to over-constraint in the presence of nominal manufacturing and assembly errors. However, with an increasing degree of distributed-compliance, the mechanism is shown to become more tolerant to such geometric imperfections. The nonlinear load-stiffening and elasto-kinematic effects in the constituent beams have an important role to play in the over-constraint and elastic averaging characteristics of this mechanism. Therefore, a parametric model that incorporates these nonlinearities is utilized in predicting the influence of a representative geometric imperfection on the primary motion stiffness of the mechanism. The proposed model utilizes a beam generalization so that varying degrees of distributed compliance are captured using a single geometric parameter.


Sign in / Sign up

Export Citation Format

Share Document