Enhancement the Maneuverability of Tele-Hydraulic System Using Fuzzy Friction Compensator

2015 ◽  
Vol 752-753 ◽  
pp. 995-999
Author(s):  
Watcharin Po-Ngaen ◽  
J. Maka

One degree of freedom (DOF) tele-hydraulic manipulation using force reflecting bilateral control will be investigated. The primary objective in the development of a simple one DOF experimental rig was to allow the investigation of different tele-control strategies prior to their implementation on the eight DOF tele-hydraulic excavator system. Because of the friction nonlinearity characteristic in hydraulic system, high steady state error and overshoot have occurred in the position response as a typical imperfect implementation of associated control dynamic. In this situation, there is a necessity to be able to effectively utilizing the intelligent friction compensated controller. This fuzzy compensator combined with fuzzy controller will be implemented to enhance the maneuverability performance. Experiments were carried out and the experimental results illustrated that the above compensated intelligent framework can improve the bilateral performance

2012 ◽  
Vol 249-250 ◽  
pp. 420-427 ◽  
Author(s):  
Pitipongsa Guansak ◽  
Den Kogphimai ◽  
Watcharin Po-Ngaen

In industrial machinery units in which handle with high loads, hydraulic cylinders are often used to actuate the manipulators. The nonlinear effects of friction in the hydraulic cylinders can be a problem if they disturb the motion of the hydraulic servo system.Friction compensation is a prerequisite for accurate in a hydraulic servo system. This paper presents anintelligent nonlinear friction compensation framework,which the purpose is to develop a friction compensator strategy based on adaptive twolayer fuzzy controller. Thecompensator Generalized Maxwell-Slip fuzzy,combined with fuzzy controller, will be implemented to reduce the lackperformance resulting from friction. The electiveness of this approach is demonstrated by experiments on the direct drive servo hydraulic system.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 998
Author(s):  
Roozbeh Sadeghian Broujeny ◽  
Kurosh Madani ◽  
Abdennasser Chebira ◽  
Veronique Amarger ◽  
Laurent Hurtard

Most already advanced developed heating control systems remain either in a prototype state (because of their relatively complex implementation requirements) or require very specific technologies not implementable in most existing buildings. On the other hand, the above-mentioned analysis has also pointed out that most smart building energy management systems deploy quite very basic heating control strategies limited to quite simplistic predesigned use-case scenarios. In the present paper, we propose a heating control strategy taking advantage of the overall identification of the living space by taking advantage of the consideration of the living space users’ presence as additional thermal sources. To handle this, an adaptive controller for the operation of heating transmitters on the basis of soft computing techniques by taking into account the diverse range of occupants in the heating chain is introduced. The strategy of the controller is constructed on a basis of the modeling heating dynamics of living spaces by considering occupants as an additional heating source. The proposed approach for modeling the heating dynamics of living spaces is on the basis of time series prediction by a multilayer perceptron neural network, and the controlling strategy regarding the heating controller takes advantage of a Fuzzy Inference System with the Takagi-Sugeno model. The proposed approach has been implemented for facing the dynamic heating conduct of a real five-floor building’s living spaces located at Senart Campus of University Paris-Est Créteil, taking into account the occupants of spaces in the control chain. The obtained results assessing the efficiency and adaptive functionality of the investigated fuzzy controller designed model-based approach are reported and discussed.


2013 ◽  
Vol 418 ◽  
pp. 63-69
Author(s):  
Sema Patchim ◽  
Watcharin Po-Ngaen

In last decade, energy efficiency of hydraulic actuators systems has been especially important in industrial machinery applications [1-. And an advanced electronics world most of the applications are developed by microcontroller based embedded system. Energy processor based variable oil flow of hydraulic controller was presented to improve the efficiency of the motor by maintaining with the load sensing. These PIC processor combined with fuzzy controller were help to design efficient optimal power hydraulic machine controller. A functional design of processor and in this system was completed by using load sensing signal to control oil flow. The advantage of the proposed system was optimized operational performance and low power utility. Without having the architectural concept of any motor we can control it by using this method. This is a low cost low power controller and easy to use. The experiment results verified its validity.


2001 ◽  
Vol 43 (11) ◽  
pp. 189-196 ◽  
Author(s):  
M. Bongards

One of the main problems in operating a wastewater treatment plant is the purification of the excess water from dewatering and pressing of sludge. Because of a high load of organic material and of nitrogen it has to be buffered and treated together with the inflowing wastewater. Different control strategies are discussed. A combination of neural network for predicting outflow values one hour in advance and fuzzy controller for dosing the sludge water are presented. This design allows the construction of a highly non-linear predictive controller adapted to the behaviour of the controlled system with a relatively simple and easy to optimise fuzzy controller. Measurement results of its operation on a municipal wastewater treatment plant of 60,000 inhabitant equivalents are presented and discussed. In several months of operation the system has proved very reliable and robust tool for improving the system's efficiency.


Author(s):  
U. Prasad ◽  
P.K. Mohanty ◽  
P.K. Chattopadhyaya ◽  
C.K. Panigrahi

This work addresses the special requirements of Automatic Generation Control in Modern interconnected Power system. In order to track the system frequency and handling the power system stability issues many control strategies has been suggested by the researchers .A new Hybrid fuzzy approach is introduced here .Fuzzy Logic controller with Mamdani interface having five member ship functions is tested with the Thermal Thermal and hydro thermal system Further hybrid Fuzzy controller is also tested with the same system and results are compared for the both The system Which is having Hybrid Fuzzy concept and thereby the response of frequency and tie line power can be improved substantially following a load change in any area. Further dynamic responses for small perturbation have been observed, considering HFLC and integral controller and the results of both have been compared.


2013 ◽  
Vol 310 ◽  
pp. 518-523
Author(s):  
Zhi Qiang Chao ◽  
Xin Ze Li ◽  
Ai Hong Meng

In recent years, hydraulic simulation has become an important means to research hydraulic system, in order to enable the single degree platform vibration curve with better traceability and reach the requirement of the test, this paper represent single degree system platform stimulated by simulation software AMESim, taking the Single degree freedom vibration hydraulic system as an example, MATlab/simulink is applied to the design of the vibration platform system fuzzy PID controller. Through the comparison between the simulation test and traditional PID controller, the designed self-tuning fuzzy controller can control the platform better, with smaller overshoot, faster response, shorter adjusting time, as well as fulfill the permissible accuracy.


2020 ◽  
Vol 12 (3) ◽  
pp. 168781402091296 ◽  
Author(s):  
Yuan-yuan Ren ◽  
Jie Wang ◽  
Xue-lian Zheng ◽  
Qi-chao Zhao ◽  
Jia-lei Ma ◽  
...  

Performance evaluation is a necessary stage in development of tracking control strategy of autonomous vehicle system, which determines the scope of application and promotes further improvement. At present, most of the tracking control strategies include performance evaluation. However, performance evaluation criteria differ from work to work, lacking comprehensive evaluation system. This article proposes a multidimensional integrated tracking control evaluation system based on subjective and objective weighting, taking into account the tracking accuracy, driving stability, and ride comfort. Through the co-simulation of CarSim and Simulink, qualitative analysis and quantitative analysis based on multidimensional evaluation system of five coupled longitudinal and lateral control strategies (lateral: pure pursuit feedforward control, dynamic-model-based optimal curvature control (dynamic feedforward control), Stanley feedback control, kinematics feedback control, and dynamic feedback control; longitudinal: the incremental proportion–integration–differentiation control) under typical operating conditions are carried out to analyze the operating range and robustness of each tracking control strategy. The results show that the Stanley tracking control strategy and the dynamic feedback tracking control strategy have a wide range of applications and robustness. The consistency of qualitative analysis results and the quantitative analysis results verify the validity and feasibility of the evaluation system.


2019 ◽  
Vol 20 (3) ◽  
pp. 184-200 ◽  
Author(s):  
Qi Zhong ◽  
Bin Zhang ◽  
Hui-ming Bao ◽  
Hao-cen Hong ◽  
Ji-en Ma ◽  
...  

2012 ◽  
Vol 452-453 ◽  
pp. 328-333
Author(s):  
Feng He ◽  
Jing Zhao ◽  
Hao Yu Wang

Targeting the road-friendliness of vehicles, the paper has analyzed dynamic deformation and dynamic load of tires under different control strategies through co-simulation. A vehicle dynamics model with semi-active air suspension has been made through using Adams, and a PID controller, a fuzzy controller and a fuzzy PID controller have been set in the Matlab to adjust the damping of the suspension, with the road excitation modeled through band-limited white noise. The result shows that the fuzzy PID controller has overcome the shortcomings of the PID controller and the fuzzy controller and a better control effect has been achieved.


2008 ◽  
Vol 16 (6) ◽  
pp. 658-673 ◽  
Author(s):  
Cheng-Yi Chen ◽  
Li-Qiang Liu ◽  
Chi-Cheng Cheng ◽  
George T.-C. Chiu

Sign in / Sign up

Export Citation Format

Share Document