Tribological Performance and Microstructural Analysis of an Aluminium Alloy Based Hybrid Composite Produced by P/M

2015 ◽  
Vol 766-767 ◽  
pp. 320-323 ◽  
Author(s):  
N. Karthik ◽  
S. Prabhu ◽  
Sahil Santosh ◽  
Ashutosh Singh

In the field of material science and engineering, there is a great impact ever since the invention of composites materials. High strength to weight ratio provides the attractive combination that moves composite materials into new era. The conventional materials like cast iron, steel, and aluminium alloy are replaced by the composite materials due to its superficial properties and could be applied in aerospace and automotive applications. Powder metallurgy fabrication technique is one of the best and attractive methods for producing metal matrix composites because of its better distribution of particles and reliability and cost in manufacturing. In this paper, composites based on aluminium alloy (Al 2024) reinforced with 10% weight fraction of hard ceramics like Aluminium oxide (Al2O3) and 10% weight fraction of Aluminium oxide (Al2O3) with 5% graphite particles is produced by Powder metallurgy method. Hardness and wear test are conducted for the Al 2024, Al-10%Al2O3, and Al-10% Al2O3-5% Graphite. In addition the surfaces of the composite are analyzed by SEM to study the wear of the composites.

Author(s):  
Dewan Muhammad Nuruzzaman ◽  
Farah Fazira Kamaruzaman ◽  
Nasrah Mohd Azmi

In this study, aluminium-aluminium oxide (Al-Al2O3) metal matrix composites of different weight percentage reinforcements of aluminium oxide were processed at different sintering temperatures. In order to prepare these composite specimens, conventional powder metallurgy (PM) method was used. Three types specimens of different compositions such as 95%Al+5%Al2O3, 90%Al+10%Al2O3 and 85%Al+15%Al2O3 were prepared under 20 Ton compaction load. Then, all the specimens were sintered in a furnace at two different temperatures 550oC and 580oC. In each sintering process, two different heating cycles were used. After the sintering process, it was observed that undistorted flat specimens were successfully prepared for all the compositions. The effects of sintering temperature and weight fraction of aluminium oxide particulates on the density, hardness and microstructure of Al-Al2O3 composites were observed. It was found that density and hardness of the composite specimens were significantly influenced by sintering temperature and percentage aluminium oxide reinforcement. Furthermore, optical microscopy revealed that almost uniform distribution of aluminium oxide reinforcement within the aluminium matrix was achieved.


2009 ◽  
Vol 423 ◽  
pp. 105-112 ◽  
Author(s):  
I. Torca ◽  
A. Aginagalde ◽  
J.A. Esnaola ◽  
L. Galdos ◽  
Zigor Azpilgain ◽  
...  

Aluminium alloys are more and more important for the automotive industry due to their high strength to weight ratio and their elevated ductility; they are used for many different parts in automobiles as exterior panels, structural parts, brake housings and others. However, their formability at room temperature is limited. This inconvenient can be improved by increasing the forming temperature of the part. That lack of formability has lead to this research project dealing with the tensile behaviour of aluminium alloys sheets, at different conditions of temperature and strain rate. The analyzed material has been 6082 aluminium alloy, under two different heat treatment conditions (O and T6). Material testing has been carried out in a temperature range between room temperature and 250°C, and a strain rate range between 0.001s-1 and 0.1s-1. Testing samples have been obtained from laminated sheet of 1.5mm thickness. This article shows that the alloy under T6 condition has a reduced formability, even in warm conditions. In order to get higher deformation values an annealed condition is proposed to form the material. The effect of T6 heat treatment and O annealing treatment in the uniaxial warm formability is discussed and a microstructural analysis is also presented in order to understand the differences on the alloy behaviour.


2021 ◽  
Vol 900 ◽  
pp. 51-60
Author(s):  
Zainab Hassan ◽  
Mudhar Al-Obaidi

There has been a significant increase in the use of composite materials to reinforce metallic structures. Such an increase has been especially noted in marine and underground applications, where there is a higher corrosion impact. Whilst there have been several attempts to investigate the mechanical properties of several synthesized composite materials, few of these have analyzed the corrosion of such composite materials at different weight ratios. The aim of this paper is to explore the best weight ratios of a graphite/Zinc composite matrix that would yield the lowest corrosion rate for a variety of applications. The research is validated using experimentation based on six additives of graphite (1wt%, 2.5wt%, 4wt%, 6wt%, 8wt%, and 10wt%), which are used as reinforcements for a range of weight ratios. The additives were prepared using the powder metallurgy method. The corrosion rate for all specimens used was carried out at the room temperature of 27 °C. Analysis results showed that 1wt% of graphite additive has the highest corrosion resistance compared to other weight ratios tested. This has been verified by examining the microstructure of the composite using an optical microscope for 12h, 24h, and 48h of immersion time in a 1M HCl acid solution.


2004 ◽  
Vol 851 ◽  
Author(s):  
A. Rabiei ◽  
Adrian T. O'Neill ◽  
Brian P. Neville

ABSTRACTThe research sited in this paper involves the development of new closed cell metal foam composite materials using powder metallurgy (PM) and gravity casting techniques. The foam is comprised of steel hollow spheres packed into a random dense arrangement, with the interstitial space between spheres occupied with a solid metal matrix. Using a casting technique, an aluminum alloy infiltrates the interstitial spaces between steel spheres. In a powder metallurgy method, steel spheres and iron powder are sintered to form a solid, closed cell structure. The measured densities of the Al-Fe composite foam and iron foam are 2.4 g/cm3 and 3.2 g/cm3, with relative densities of 42% and 41% respectively.The hollow sphere metal foam composite materials developed in this study displayed superior compressive strength as compared to hollow sphere foams currently being produced. The compressive strength of the cast Al-Fe foam averaged 67 MPa over a region of 10 to 50% strain, while the steel PM foam averaged 45 MPa over the same strain region. Densification began at approximately 50% for the cast foam and 55% for the PM foam.


2012 ◽  
Vol 576 ◽  
pp. 284-288
Author(s):  
Fatahul Arifin ◽  
Iskandar ◽  
Azharuddin Azharuddin

Fly ash is waste of coal combustion which can be used in Aluminum alloy. In this research Aluminum is mixed with fly ash that used powder metallurgy method. Aluminum powder is produced by Merck German which is in irregular form and has homogeneous particles, while fly ash is got from residual combustion coal in forging section of Politeknik Negeri Sriwijaya (Polsri) mechanical workshop which is processed until grains size 140 and 270 mesh. Aluminum Powder had mixed with weight fraction 5 % of fly ash for an hour then is pressed with holding time 60 and 120 seconds, compacting pressure are 139 N/mm2 and 275 N/mm2 using cold iso-static pressing. After that green body is resulted then is being sintered until 5500C. Taguchi Method orthogonal L4 is used to find out factors which influence optimum condition of Brinell’s hardness Aluminum/5% fly ash. The result of analysis using ANOVA is grains size factor, holding time, and compacting pressure has affected significantly to hardness of Aluminum/5% fly ash.


1974 ◽  
Vol 13 (3) ◽  
pp. 224-226
Author(s):  
B. L. Rudoi ◽  
M. Kh. Shorshorov ◽  
G. M. Matveev ◽  
B. A. Borok ◽  
R. P. Shchegoleva

2015 ◽  
Vol 754-755 ◽  
pp. 513-517
Author(s):  
Mohd Izrul Izwan Ramli ◽  
Norainiza Saud ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Mohd Nazree Derman ◽  
Rita Mohd Said ◽  
...  

Composite solder has drawn attention improvement in microstructural modification and mechanical properties. This research was done to investigate the influence of activated carbon (AC) particulate on the commercial Sn-Cu-Ni solder system (SN100C) solder alloy. The SN100C+AC composite solder was fabricated via powder metallurgy (PM) technique. In this study, five different AC compositions were chosen; (0, 0.25, 0.5, 0.75 and 1.0 wt. %. This study has shown that composite solder has better properties compared to the monolithic solder alloy. A small amount of AC particulate had improved the physical properties of the composite solder. Microstructural analysis showed that the reinforcement was well distributed along the grain boundaries and no significant influence on the melting point of SN100C. Apart from that, 1.0 wt. % of AC additions results with the highest hardness value compared to the other composition.


2019 ◽  
Vol 51 (3) ◽  
pp. 327-338 ◽  
Author(s):  
Mehmet Akkaş ◽  
Serkan Islak

In this study, NiB-TiC composite materials were produced using powder metallurgy. In the Ni-TiC-B powder mixture, TiC was fixed at a rate of 5 %, 5, 10 and 15 % boron was added and mechanical alloying was carried out. The prepared powder mixtures were cold pressed under pressure of 400 MPa and sintered in an argon atmosphere at 800?C for 2 hours. Microstructure, phase formation, hardness, wear and corrosion properties of the samples were investigated in detail. Scanning electron microscopy (SEM) was used for microstructure analysis and X-ray diffractogram (XRD) was used for phase formation detection. The hardness measurements of the samples were measured by a microhardness measuring device. Densities of the samples were determined by Archimedes' principle. The corrosion tests were performed potentiodynamic polarization curves of the composite materials in 3.5 % NaCl solution. Wear tests were carried out the composite materials under a load of 10 N. Results showed that by increasing the amount of B, the wear and corrosion resistance increased.


Sign in / Sign up

Export Citation Format

Share Document