TG-FTIR Analysis of Sewage Sludge: Influence of Moisture and Atmosphere

2015 ◽  
Vol 768 ◽  
pp. 532-541
Author(s):  
Qian Jin Dai ◽  
Xu Guang Jiang ◽  
Yu Qi Jin ◽  
Fei Wang ◽  
Yong Chi ◽  
...  

Thermogravimetric analysis (TGA), coupled with Fourier transform infrared analysis (TG-FTIR) of sewage sludge was carried out to investigate the influence of moisture and oxygen on gas evolution during pyrolysis of sewage sludge. Wet sewage sludge with moisture of 86.47(wt. %) was collected from Shanghai, China. Wet sewage sludge and air dried sewage sludge were used in TG-FTIR analysis, while combustion (air flow) and pyrolysis (nitrogen flow) were separately introduced to achieve comparison. In condition of dry sewage sludge pyrolysis, there were two peaks representing release of separately moisture and volatile. Weight lost 85% in the temperature range of 25-600 °C while the main volatile matters were released before 600 °C. When air flow was introduced, a third peak of char combustion occurred. Wet sewage sludge made no much difference, except for the relatively outstanding peak of moisture release. Temperature regions for each stage were the same for wet and dry sewage sludge from TG curve. However, from the FTIR analysis, ammonia has two peaks between 50 and 450 °C in pyrolysis while ammonia has only one peak between 50 and 300°C.

2014 ◽  
Vol 884-885 ◽  
pp. 148-153
Author(s):  
Dian Zheng Fu ◽  
Ye Tang ◽  
Zheng Hui Fu ◽  
Hong Liang Zhang ◽  
Wei Li

In this study, thermogravimetric analysis coupled with Fourier transform infrared analysis (TG-FTIR) was used to studying the volatile evolution characteristic during the eucalyptus pyrolysis from South China. The thermogravimetric analysis results indicate that the pyrolysis of eucalyptus occurred in three main stages which are the moisture vaporization stage, the volatile matter release stage and the char decomposition stage. The major gases evolved during the pyrolysis process were identified to be H2O, CO, CO2, CH4. In addition, the effects of different heating rates on the emissions of these pyrolysis products have been studied.


2004 ◽  
Vol 18 (6) ◽  
pp. 1814-1821 ◽  
Author(s):  
Haiping Yang ◽  
Rong Yan ◽  
Terence Chin ◽  
David Tee Liang ◽  
Hanping Chen ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2391 ◽  
Author(s):  
Yuanlin Ren ◽  
Tian Tian ◽  
Lina Jiang ◽  
Xiaohui Liu ◽  
Zhenbang Han

To improve the strength and maintain the inherent properties of flame-retardant polyacrylonitrile (FR-PAN) fiber, a commercialized hydrocarbon polymer, i.e., poly (vinyl alcohol) (PVA), used as an enhancement component, was blended with polyacrylonitrile (PAN) spinning dope to fabricate a PVA/PAN composite fiber through wet-spun technology. Then, cross-linked PVA/PAN composite fiber (C-PVA/PAN) was acquired via boric acid cross-linking. Finally, flame-retardant C-PVA/PAN fiber (FR-PVA/PAN) was prepared by phosphorylation. The structures of the samples were characterized by Fourier transform infrared analysis (FTIR) and X-ray photoelectron spectroscopy (XPS). The thermogravimetric analysis (TGA) results reveal that the thermal stability of the composite fiber is lower than that of the pristine PAN fiber. However, the char residue of the composite fiber is higher than that of the control sample, wherein, FR-PVA/PAN has the highest char residue of 62.5 wt% at 800 °C. The results regarding the combustion properties of FR-PVA/PAN show that the fire hazard of FR-PVA/PAN is restrained greatly, indicating excellent flame-retardant performance. The corresponding flame-retardant mechanism of FR-PAV/PAN is investigated by Pyrolysis gas chromatography and mass spectrometry (Py-GC/MS) and thermogravimetric analysis coupled with Fourier transform infrared analysis (TG-FTIR). The results indicate the gas-phase and condensed-phase flame-retardant mechanisms.


2008 ◽  
Vol 22 (1) ◽  
pp. 38-45 ◽  
Author(s):  
Jingai Shao ◽  
Rong Yan ◽  
Hanping Chen ◽  
Baowen Wang ◽  
Dong Ho Lee ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3588
Author(s):  
Jiayi Chen ◽  
Yansong Liu ◽  
Jiayue Zhang ◽  
Yuanlin Ren ◽  
Xiaohui Liu

Lyocell fabrics are widely applied in textiles, however, its high flammability increases the risk of fire. Therefore, to resolve the issue, a novel biomass-based flame retardant with phosphorus and nitrogen elements was designed and synthesized by the reaction of arginine with phosphoric acid and urea. It was then grafted onto the lyocell fabric by a dip-dry-cure technique to prepare durable flame-retardant lyocell fabric (FR-lyocell). X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated that the flame retardant was successfully introduced into the lyocell sample. Thermogravimetric (TG) and Raman analyses confirmed that the modified lyocell fabric featured excellent thermal stability and significantly increased char residue. Vertical combustion results indicated that FR-lyocell before and after washing formed a complete and dense char layer. Thermogravimetric Fourier-transform infrared (TG-FTIR) analysis suggested that incombustible substances (such as H2O and CO2) were produced and played a significant fire retarding role in the gas phase. The cone calorimeter test corroborated that the peak of heat release rate (PHRR) and total heat release (THR) declined by 89.4% and 56.4%, respectively. These results indicated that the flame retardancy of the lyocell fabric was observably ameliorated.


Author(s):  
Bing Ge ◽  
Yongbin Ji ◽  
Shusheng Zang ◽  
Yongwen Yuan ◽  
Jianhua Xin

RQL (Rich-burn/Quick-quench/Lean-burn) is a candidate to support fuel flexible stationary power generation. The equivalence ratio of rich-burn zone (Φr) and the quench air flow are paramount for implantation of the whole process. In this paper, an experimental test stand with multi-sector model combustor was established. Rich premixed combustion were used in rich zone. The experiments which pay attention to the impacts of Φr and quench air flow on the combustion performance and emission are conducted. The results show that the flame in RQL combustor is segmented when Φr >1.4, presenting flameless combustion in rich zone and a pale blue flame in lean zone. Axial temperature distribution is M-type. Two peaks appear at the head and tail of the combustion chamber, and the valley is located in the quench zone. The concentration of CO decreases rapidly in quench zone because of the injection of quench air. However, the concentration of NOx increases quickly at the same time. The outlet emissions of CO and NOx in RQL combustor are maintained at low level (<20ppm@15%O2). With a decrease of Φr from 1.4 to 1.2, the emission of NOx increases, and the emission of CO decreases. With jet-to-mainstream mass-flow ratio increases from 1.28 to 2.22., the concentration of NOx in outlet declines gently, but the CO emission increase. The average exhaust temperature depresses gradually, and the uniformity coefficient of exhaust temperature increases.


Sign in / Sign up

Export Citation Format

Share Document