scholarly journals Removal of Chemical Oxygen Demand (COD) from Domestic Wastewater Using Hybrid Reed Bed System

2015 ◽  
Vol 773-774 ◽  
pp. 1226-1230 ◽  
Author(s):  
Omar Hamed Jehawi ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Mushrifah Idris ◽  
Hassimi Abu Hasan ◽  
Nadya Hussin A.L. Sbania ◽  
...  

Hybrid reed bed systems (HRBs) have a good potential for wastewater treatment in developing countries due to its simple operation and low implementation costs. HRBs units were constructed at Bukit Putri, in UKM university campus, Malaysia, of which were planted with Scirpus grossus plants, commonly known as club-rush or bulrush (water loving plants). Generally, HRBs are classified into two categories: surface-flow and subsurface-flow. Both systems are capable of removing Chemical Oxygen Demand (COD) from different types of wastewaters. The aim of this study was to determine the percentage removal of Chemical Oxygen Demand (COD) at different concentration of domestic wastewater by using a HRB systems. This hybrid system was arranged in a serial stages consisting of a surface-flow (SF) bed, followed by a vertical-flow (VF) bed and finally by a horizontal-flow (HF) bed. In the present study, the performance of the HRB on domestic wastewater, particularly on COD, with and without plants was investigated. It is observed that the planted system with Scirpus grossus had performed better than the unplanted system. The result shows that the COD removal varied between 60 and 92%, depending on the loading rates (53-86 mg/L/day). The treatment system was operated for three months in the continuous flow process. Based on the results, it can be concluded that the HRB system ensures a more stable removal of organic pollutants (COD) from domestic wastewaters.

2016 ◽  
Vol 15 (4) ◽  
pp. 23-34 ◽  
Author(s):  
F T Z Jabeen ◽  
J V Shreevathsa

This study was designed to investigate the fungi associated with palm oil mill effluent (POME) in Gulur village of Tumkur. Biodegradation of palm oil mill effluents was conducted to measure the discarded POME based on physicochemical quality. The fungi that were isolated are Aspergillusniger, A. flavus, A. fumigatus, A. ochraceus, Rhizopussp, Peniciliumsp and Trichodermavirde. The autoclaved and unautoclaved raw POME samples were incubated for 7 days and the activities of the fungi were observed each for 12 hours. The supernatants of the digested POME were investigated for the removal of chemical oxygen demand (COD), color (ADMI), and biochemical oxygen demand (BOD) at the end of each digestion cycle. The results showed that the unautoclaved raw POME sample degraded better than the inoculated POME sample and this suggests that the microorganisms that are indigenous in the POME are more effective than the introduced micro-organisms. This result, however, indicates the prospect of isolating indigenous microorganisms in the POME for effective biodegradation of POME. Moreover, the effective treatment of POME yields useful products such as reduction of BOD, COD, and color.


Author(s):  
H. Garba ◽  
C. A. Elanu

An assessment of the chemical characteristics of industrial and domestic wastewater discharges on seven parameters into Kaduna River on a bimonthly basis was carried out. PH, dissolved oxygen (DO), chloride, nitrite, chemical oxygen demand (COD), biochemical oxygen demand (BOD) and iron were analyzed to determine their concentration levels. From the analysis, the highest mean concentration of the parameters were 8.24 of pH, 7.7 mg/l of DO, 233.4 mg/l of chloride, 55.68 mg/l of COD, 27.95 mg/l of nitrite, 122.22 mg/l of BOD, and 17.05 mg/l of iron. After comparing with prescribed standards, it can be concluded that there is evidence of organic and inorganic accumulation of contaminants into River Kaduna.


2013 ◽  
Vol 67 (1) ◽  
pp. 24-32 ◽  
Author(s):  
Tarek Elmitwalli

Although the upflow anaerobic sludge blanket (UASB) reactor has been widely applied for domestic wastewater treatment in many developing countries, there is no sufficient mathematical model for proper design and operation of the reactor. An empirical model based on non-linear regression was developed to represent the physical and chemical removal of suspended solids (SS) in the reactor. Moreover, a simplified dynamic model based on ADM1 and the empirical model for SS removal was developed for anaerobic digestion of the entrapped SS and dissolved matter in the wastewater. The empirical model showed that effluent suspended chemical oxygen demand (CODss) concentration is directly proportional to the influent CODss concentration and inversely proportional to both the hydraulic retention time (HRT) of the reactor and wastewater temperature. For obtaining sufficient CODss removal, the HRT of the UASB reactor must be higher than 4 h, and higher HRT than 12 h slightly improved CODss removal. The dynamic model results showed that the required time for filling the reactor with sludge mainly depends on influent total chemical oxygen demand (CODt) concentration and HRT. The influent CODt concentration, HRT and temperature play a crucial role on the performance of the reactor. The results indicated that shorter HRT is needed for optimization of CODt removal, as compared with optimization of CODt conversion to methane. Based on the model results, the design HRT of the UASB reactor should be selected based on the optimization of wastewater conversion and minimization of biodegradable SS accumulation in the sludge bed, not only based on COD removal, to guarantee a stable reactor performance.


2013 ◽  
Vol 68 (5) ◽  
pp. 1144-1150 ◽  
Author(s):  
Anna Mietto ◽  
Maurizio Borin ◽  
Michela Salvato ◽  
Paolo Ronco ◽  
Nicola Tadiello

The performance of three integrated wetland treatment plants (horizontal sub-surface flow (h-SSF) and floating treatment wetland (FTW) with differentiated primary treatments) designed for treating domestic wastewater was investigated, monitoring total (TN), nitrate (NO3-N), nitrite (NO2-N) and ammonia nitrogen (NH4-N), total (TP) and phosphate phosphorus (PO4-P), chemical (COD) and biological oxygen demand (BOD5), and dissolved oxygen (DO) at the inlet and outlet of each wetland section from February 2011 to June 2012. Sediments settled in the FTW were collected and analyzed. The growth of plants in each system was also monitored, observing their general conditions. The chemical–physical characteristics of the pretreated domestic wastewater depended on the primary treatment installed. During the monitoring period we observed different reduction performance of the wetland sector in the three sites. In general, the wetland systems demonstrated the capacity to reduce TN, COD, BOD5 and Escherichia coli, whereas NO3-N and NH4-N removal was strictly influenced by the chemical conditions, in particular DO concentration, in the h-SSF and FTW. Vegetation (Phragmites australis, Alnus glutinosa and Salix eleagnos) was well established in the h-SSF as well as in the floating elements (Iris pseudacorus), although there were some signs of predation. FTW is a relatively novel wetland system, so the results obtained from this study can pave the way for the application of this technology.


2010 ◽  
Vol 3 (3) ◽  
pp. 135-140
Author(s):  
Ahmad Md. Noor ◽  
Pedy Artsanti ◽  
P.E. Lim ◽  
S. Suryani ◽  
H.P.S Abdul Khalil

The thermal Charcoal for domestic used was crushed into powder and mixed with gravel. Four reactors of different proportion and size of charcoal and gravel were set up without vegetation. Sample of landfill leachates obtained from site of Pulau Burung Landfill, Penang, was introduced into the reactors. Ammonia, chemical oxygen demand (COD), and iron of inlet and outlet from four reactors were analyzed by standard methods. Result shows that overall performance of removing ammonia and iron were much better than COD.   Keywords: charcoal, leachate, filter media


2020 ◽  
Author(s):  
Silambarasi Mooralitharan ◽  
Zarimah Hanafiah ◽  
Teh Sabariah Abd Manan ◽  
Hassimi Hasan ◽  
Henritte Jensen ◽  
...  

Abstract The fungi-based technology, wild-Serbian Ganoderma lucidum (WSGL) as myco-alternative to existing conventional microbial-based wastewater treatment is introduced in this study as a potential alternative treatment. The mycoremediation is highly persistent for its capability to oxidatively breakdown pollutant substrates and widely researched for its medicinal properties. Utilizing the non-hazardous properties and high degradation performance of WSGL, this research aims to find optimum conditions and model the mycoremediation treatment design for Chemical Oxygen Demand (COD) and Ammonia Nitrogen (AN) removal in domestic wastewater via response surface methodology (RSM). Combined process variables were temperature (⁰C) (Model 1) and the volume of mycelial pellets (%) (Model 2) against treatment time (hour). Response variables for these two sets of central composite design (CCD) were the removal efficiencies of COD (%) and AN (%). The regression line fitted well with the data with R2 values of 0.9840 (Model 1-COD), 0.9477 (Model 1-AN), 0.9988 (Model 2-COD) and 0.9990 (Model 2-AN). The lack of fit test gives the highest value of Sum of Squares equal to 9494.91 (Model 1- COD), 9701.68 (Model 1-AN), 23786.55 (Model 2-COD) and 13357.02 (Model 2-AN), with probability F values less than 0.05 showing significant models. The optimum conditions were established corresponding to the percentage of COD and AN removal obtained were 95.1% and 96.3%, accordingly at the optimum temperature 25°C at the treatment time of 24 h, meanwhile 0.25% of mycelial pellet with 76.0% and 78.4% COD and AN removal, respectively. The high performance achieved demonstrates that the mycoremediation of G. lucidum is highly potential as part of the wastewater treatment system in treating domestic wastewater of high organic loadings.


2015 ◽  
Vol 71 (10) ◽  
pp. 1536-1544 ◽  
Author(s):  
P. de Rozari ◽  
M. Greenway ◽  
A. El Hanandeh

Constructed wetland ecotechnologies (CWEs) are a promising solution to effectively treat domestic wastewater in developing countries at low cost. This paper reports the findings of the effectiveness of sand media amended with woody biochar and two plants species (Melaleuca quinquenervia and Cymbopogon citratus) in removing biological oxygen demand (BOD5), suspended solids and coliforms. The experimental design consisted of 21 vertical flow (VF) mesocosms. There were seven media treatments using sand amended with varying proportions of biochar. During the first 8 months, the mesocosms were loaded with secondary clarified wastewater (SCW) then septage. The influent had a 4-day hydraulic retention time. Samples were monitored for BOD5, total suspended solids (TSS), total volatile solids (TVS), total coliforms and faecal coliforms. In the first 8 months, there were no significant performance differences between media treatments in the outflow concentrations of BOD5, TSS and TVS. The significant differences occurred during the last 3 months; using septage with biochar additions performed better than pure sand. For coliforms, the significant differences occurred after 6 months. In conclusion, the addition of biochar was not effective for SCW. The VF mesocosms system proved to be more effective in removing BOD5, TSS, TVS and coliforms when septage was loaded into the media.


Sign in / Sign up

Export Citation Format

Share Document