Control System for Industrial Robot Equipped with Tool for Advanced Task in Manufacturing

2015 ◽  
Vol 783 ◽  
pp. 105-113 ◽  
Author(s):  
Tadeusz Mikolajczyk

A special control system of IRb 60 industrial robots by using PC computer was shown in this work. Robots steering system equipped with the controller connected to computer’s LPT port was made and tested. This interface was connected to a manual control panel of the robot. The system was controlled by special VB 6.0 software. It is possible manual or automated control of robot move. Using this system was made other applications for many tasks of using an industrial robot equipped with tool and sensors in research and manufacturing.


2021 ◽  
Vol 21 (2) ◽  
pp. 1-22
Author(s):  
Chen Zhang ◽  
Zhuo Tang ◽  
Kenli Li ◽  
Jianzhong Yang ◽  
Li Yang

Installing a six-dimensional force/torque sensor on an industrial arm for force feedback is a common robotic force control strategy. However, because of the high price of force/torque sensors and the closedness of an industrial robot control system, this method is not convenient for industrial mass production applications. Various types of data generated by industrial robots during the polishing process can be saved, transmitted, and applied, benefiting from the growth of the industrial internet of things (IIoT). Therefore, we propose a constant force control system that combines an industrial robot control system and industrial robot offline programming software for a polishing robot based on IIoT time series data. The system mainly consists of four parts, which can achieve constant force polishing of industrial robots in mass production. (1) Data collection module. Install a six-dimensional force/torque sensor at a manipulator and collect the robot data (current series data, etc.) and sensor data (force/torque series data). (2) Data analysis module. Establish a relationship model based on variant long short-term memory which we propose between current time series data of the polishing manipulator and data of the force sensor. (3) Data prediction module. A large number of sensorless polishing robots of the same type can utilize that model to predict force time series. (4) Trajectory optimization module. The polishing trajectories can be adjusted according to the prediction sequences. The experiments verified that the relational model we proposed has an accurate prediction, small error, and a manipulator taking advantage of this method has a better polishing effect.



2011 ◽  
Vol 464 ◽  
pp. 272-278 ◽  
Author(s):  
Wei You ◽  
Min Xiu Kong ◽  
Li Ning Sun ◽  
Chan Chan Guo

In this paper, aiming at solving the problems of dynamic coupling effects and flexibility of joints and links, a kind of control system specialized for high payload industrial robots is proposed . After the comparisons between the control systems in all kinds of robots and numerical machines, industrial PC with TwinCAT real-time system is chosen as the motion control unit, EtherCAT is used for command transmitting. The whole control system has a decoupled and centralized control structure. The proposed control system is applied in control of a kind of high payload material handling robots with complex compound control algorithms. The final results shows that the control commands can be easily calculated and transmitted in one sample unit. The proposed control scheme is meaningful to real engineering application.



Author(s):  
A. M. Romanov

A review of robotic systems is presented. The paper analyzes applied hardware and software solutions and summarizes the most common block diagrams of control systems. The analysis of approaches to control systems scaling, the use of intelligent control, achieving fault tolerance, reducing the weight and size of control system elements belonging to various classes of robotic systems is carried out. The goal of the review is finding common approaches used in various areas of robotics to build on their basis a uniform methodology for designing scalable intelligent control systems for robots with a given level of fault tolerance on a unified component base. This part is dedicated to industrial robotics. The following conclusions are made: scaling in industrial robotics is achieved through the use of the modular control systems and unification of main components; multiple industrial robot interaction is organized using centralized global planning or the use of previously simulated control programs, eliminating possible collisions in working area; intellectual technologies in industrial robotics are used primarily at the strategic level of the control system which is usually non-real time, and in some cases even implemented as a remote cloud service; from the point of view of ensuring fault tolerance, the industrial robots developers are primarily focused on the early prediction of faults and the planned decommissioning of the robots, and are not on highly-avaliability in case of failures; industrial robotics does not impose serious requirements on the dimensions and weight of the control devices.



2020 ◽  
pp. 355-364
Author(s):  
Supriya Sahu ◽  
Bibhuti Bhusan Choudhury

This article describes how industrial robots are generally used to perform different tasks in industries, such as pick and place, and many more operations in industries. Among these, pick and place is a very common and frequently used task. Path planning is the most important thing in order to make any process more economical. The main focus of the research is to design a fuzzy control system for path planning for industrial robots using artificial intelligence using fuzzy logic. For the analysis, ten different tasks are tested. For fuzzy logic systems, three membership functions are analyzed and compared to find the best result. From the research, it has been found that a Gaussian membership function gives more accurate result in comparison to the other two membership functions.



2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Gilbert Tang ◽  
Phil Webb

In industrial human-robot collaboration, variability commonly exists in the operation environment and the components, which induces uncertainty and error that require frequent manual intervention for rectification. Conventional teach pendants can be physically demanding to use and require user training prior to operation. Thus, a more effective control interface is required. In this paper, the design and evaluation of a contactless gesture control system using Leap Motion is described. The design process involves the use of RULA human factor analysis tool. Separately, an exploratory usability test was conducted to compare three usability aspects between the developed gesture control system and an off-the-shelf conventional touchscreen teach pendant. This paper focuses on the user-centred design methodology of the gesture control system. The novelties of this research are the use of human factor analysis tools in the human-centred development process, as well as the gesture control design that enable users to control industrial robot’s motion by its joints and tool centre point position. The system has potential to use as an input device for industrial robot control in a human-robot collaboration scene. The developed gesture control system was targeting applications in system recovery and error correction in flexible manufacturing environment shared between humans and robots. The system allows operators to control an industrial robot without the requirement of significant training.



Author(s):  
Gilbert Tang ◽  
Seemal Asif ◽  
Phil Webb

Purpose – The purpose of this paper is to describe the integration of a gesture control system for industrial collaborative robot. Human and robot collaborative systems can be a viable manufacturing solution, but efficient control and communication are required for operations to be carried out effectively and safely. Design/methodology/approach – The integrated system consists of facial recognition, static pose recognition and dynamic hand motion tracking. Each sub-system has been tested in isolation before integration and demonstration of a sample task. Findings – It is demonstrated that the combination of multiple gesture control methods can increase its potential applications for industrial robots. Originality/value – The novelty of the system is the combination of a dual gesture controls method which allows operators to command an industrial robot by posing hand gestures as well as control the robot motion by moving one of their hands in front of the sensor. A facial verification system is integrated to improve the robustness, reliability and security of the control system which also allows assignment of permission levels to different users.



1980 ◽  
Vol 24 (1) ◽  
pp. 40-40
Author(s):  
Joel J. Kramer

Between the extreme of complete manual control and a totally automated control system is a continuum of arrangements in which man shares control with a computer. The most important of these arrangements today, and for the forseeable future, puts man in the role of supervisor: monitoring signals sensed and displayed by the computer, detecting deviations from a criterion state, and selecting, evaluating and implementing command override decisions that handle those unusual events for which computer programs cannot be written.



2017 ◽  
Vol 2017 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Геннадий Крахмалев ◽  
Gennadiy Krakhmalev ◽  
Дмитрий Петрешин ◽  
Dmitriy Petreshin ◽  
Олег Крахмалев ◽  
...  

A complex of measures on a new robot tooling envisages a fulfillment of the calibration procedure of the tool before its use in an operation. It is necessary for that the system of industrial robot control could carry out a tool travel in a robot operation space in the correct way. For that purpose the simulators describing coordinate transformations in this robot model must be supplemented by a simulator developed for the tool determined. Simulators describing coordinate trans-formations for a tool are created by a system of control automatically at the fulfillment of a tool calibration before the introduction of a new tool in operation. The simulators created are saved in permanent memory (ROM) of a controller of the control system in a tool library with the indication of logical naming for this tool. In the following at the pro-gramming of industrial robot motion a tool installed on a robot is pointed out to the system of control by means of logical naming a tool chosen. This paper reports the simulators for the tool center calibration of industrial robots corresponding to the methods used most commonly in practice of industrial robot operation. The simulators obtained can be used in systems for industrial robot control.



2014 ◽  
Vol 685 ◽  
pp. 284-288
Author(s):  
Ren Qing He ◽  
Gang Feng Yan

Most of industrial robots are still programmed using the typical teaching process, through the use of the robot teach pendant. In order to simplify the teaching process, an intuitive control system using smartphone is proposed. The smartphone has multiple motion and position sensors in it. When smartphone is being held in hand, the motion sensors capture posture of hand which the input of robot controller is depended on. The smartphone and robot controller communicates wirelessly through TCP/IP protocol. The system can complete typical operations of teaching process. Compared with the typical teaching process, this system is intuitive and much easier to use.



2014 ◽  
Vol 0 (10) ◽  
pp. 73-77
Author(s):  
P. P. Tkachuk ◽  
Y. P. Salnyk ◽  
Y. M. Pashchuk ◽  
I. V. Matala


Sign in / Sign up

Export Citation Format

Share Document