Effect of Magnesium Addition on Processing the Al-0.8 Mg-0.7 Si/SiCp Metal Matrix Composites

2015 ◽  
Vol 787 ◽  
pp. 553-557 ◽  
Author(s):  
L. Poovazhagan ◽  
K. Rajkumar ◽  
P. Saravanamuthukumar ◽  
S. Javed Syed Ibrahim ◽  
S. Santhosh

Metal matrix composites (MMCs) play a vital role in today’s engineering industries. Stir casting is one of the most inexpensive methods for the production of particulate reinforced metal matrix composites. However there are few problems encountered in stir casting such as the problem of poor wettability of the reinforcement particles in the matrix metal. The reinforcement particles have the tendency to either settle at the bottom of the crucible or they tend to float at the top of molten metal. This is due to the greater surface tension of the molten metal. Various techniques are available to improve the wettability of the ceramic particles in metal matrix which includes Particle treatment, Particle coating and Addition of alloying agent. In this work, Magnesium (Mg) was used as the alloying element to improve the wettability of SiC particles in the Al matrix. Mg is used to reduce the surface tension of molten aluminum (Al) thus promoting proper wetting. To understand the effect of Mg on improving the wettability of SiC in aluminum matrix, different weight percentages of SiC particles reinforced aluminum alloy 6061(AA6061) based MMCs were fabricated in stir casting method by adding Mg as alloying element. The cast specimens were subjected to microstructural analysis, tension tests and hardness tests. Results showed that addition of Mg with SiC in AA6061 matrix significantly improved the wetting between Al and SiC; subsequently MMCs possessed enhanced mechanical properties.

2013 ◽  
Vol 592-593 ◽  
pp. 614-617 ◽  
Author(s):  
Konstantinos Anthymidis ◽  
Kostas David ◽  
Pavlos Agrianidis ◽  
Afroditi Trakali

It is well known that the addition of ceramic phases in an alloy e.g. aluminum, in form of fibers or particles influences its mechanical properties. This leads to a new generation of materials, which are called metal matrix composites (MMCs). They have found a lot of application during the last twenty-five years due to their low density, high strength and toughness, good fatigue and wear resistance. Aluminum matrix composites reinforced by ceramic particles are well known for their good thermophysical and mechanical properties. As a result, during the last years, there has been a considerable interest in using aluminum metal matrix composites in the automobile industry. Automobile industry use aluminum alloy matrix composites reinforced with SiC or Al2O3 particles for the production of pistons, brake rotors, calipers and liners. However, no reference could be cited in the international literature concerning aluminum reinforced with TiB particles and Fe and Cr, although these composites are very promising for improving the mechanical properties of this metal without significantly alter its corrosion behavior. Several processing techniques have been developed for the production of reinforced aluminum alloys. This paper is concerned with the study of TiB, Fe and Cr reinforced aluminum produced by the stir-casting method.


2008 ◽  
Vol 41-42 ◽  
pp. 61-67
Author(s):  
Li Liang ◽  
Ming Li ◽  
Chi Tay Tsai

Dynamic properties of Nanostructured Metal Matrix Composites (NMMCs) materials consisting of nanograined aluminum matrix with nano or micro-sized ceramics particulates are calculated using Ansys/LS-DYNA in this paper. There are three conditions for the mechanics analysis involved the target with 10 vol. % SiC, 30 vol. % SiC and 50 vol. % SiC. It is assumed that the SiC particles uniformly distributed in the matrix. According to the analysis, the strength of NMMCs material is reduced, and the deformation of target is weakened by the vol. % of SiC increasing.


Author(s):  
Uday KN ◽  
Rajamurugan G

Aluminum metal matrix composites are a new class of materials that have gathered more attention from many materialists. Especially, the automotive components like a piston, cylinder block, brake drum, etc., fabricated by different reinforcement, which has exposed better performance over conventional engineering materials. Aluminum composites are generally fabricated by stir casting technique due to simplicity in operation and adaptive to mass or job order production. The paper provides a background for the readers interested in the production of metal matrix composites through stir casting. Based on the literature assessment, the special attentions taken by the researchers to enhance the uniform distribution of particle to avoid agglomeration are discussed. The composite performances mainly depend on the aluminum matrix, particle size, the quantity of reinforcement, preheating temperature of reinforcement, and processing parameters such as stirring speed, stirring time, and wetting agents. The selection of two reinforcements and their suitable parameters for wetting are attaining interest by many researchers and maybe opted as future scope.


2016 ◽  
Vol 61 (1) ◽  
pp. 393-398 ◽  
Author(s):  
B. Dybowski ◽  
T. Rzychoń ◽  
B. Chmiela ◽  
A. Gryc

It is well known that the properties of a metal matrix composites depend upon the properties of the reinforcement phase, of the matrix and of the interface. A strong interface bonding without any degradation of the reinforcing phase is one of the prime objectives in the development of the metal matrix composites. Therefore, the objective of this work is to characterize the interface structure of WE43/SiC particles composite. Magnesium alloys containing yttrium and neodymium are known to have high specific strength, good creep and corrosion resistance up to 250°C. The addition of SiC ceramic particles strengthens the metal matrix composite resulting in better wear and creep resistance while maintaining good machinability. In the present study, WE43 magnesium matrix composite reinforced with SiC particulates was fabricated by stir casting. The SiC particles with 15 μm, 45 μm and 250 μm diameter were added to the WE43 alloy. The microstructure of the composite was investigated by optical microscopy, scanning electron microscopy, scanning transmission electron microscopy and XRD analysis. YSi and Y2Si reaction products are observed at the interfaces between SiC particles and WE43 matrix in the composite stirred at 780°C. Microstructure characterization of WE43 MMC with the 45 μm, stirred at 720°C showed relative uniform reinforcement distribution. Moreover, the Zr-rich particles at particle/matrix interface were visible instead of Y-Si phases. In the case of composite with 15 μm particles the numerous agglomerates and reaction products between SiC particles and alloying elements were observed. The presence of SiC particles assisted in improving hardness and decreasing the tensile strength and plastic properties.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Shashi Prakash Dwivedi ◽  
Satpal Sharma ◽  
Raghvendra Kumar Mishra

A356/SiC metal matrix composites with different weight percent of SiC particles were fabricated by two different techniques such as mechanical stir casting and electromagnetic stir casting. The results of macrostructure, microstructure, and XRD study revealed uniform distribution, grain refinement, and low porosity in electromagnetic stir casing samples. The mechanical results showed that the addition of SiC particles led to the improvement in tensile strength, hardness, toughness, and fatigue life. It indicates that type of fabrication process and percentage of reinforcement are the effective factors influencing the mechanical properties. It is observed that when percentage of reinforcement increases in electromagnetic stir casting, best mechanical properties are obtained.


2013 ◽  
Vol 577-578 ◽  
pp. 85-88
Author(s):  
K.G. Anthymidis ◽  
Kostas David ◽  
A. Trakali ◽  
P. Agrianidis

Composite materials which main constituent part is a metal are called Metal Matrix Composites (MMCs). The other compounds may be metals too, ceramics or even organics. They are well known for their excellent thermo-physical and mechanical properties. Reinforcement is used to improve different properties of the main material, such as wear resistance, hardness, fatigue resistance, friction coefficient, thermal conductivity and others. As a result, during the last years, MMCs have found a lot of application in automobile industry for the production of brakes and parts of engines and in aerospace industry for the production of structural components, as well as in electrical and electronic industry and in many other applications. MMCs can be produced by many ways, such as, powder blending and consolidation, foil diffusion bonding, electroplating, spray deposition, stir-casting and others. In this research stir-casting was used as processing technique for the production of Aluminum matrix composites reinforced by ceramic particles and iron. The morphologies of the produced composite materials were examined using optical and SEM microscopy. The compositions of their micro structural features were determined by EDX spectroscopy. The phases formed were determined by XRD techniques. In the tribological tests, under dry wear conditions, the as-produced composites materials showed significant increased resistance to wear compared to pure Al metal.


2014 ◽  
Vol 984-985 ◽  
pp. 384-389 ◽  
Author(s):  
L. Poovazhagan ◽  
K. Kalaichelvan ◽  
V.R. Balaji ◽  
P. Ganesh ◽  
A. Kali Avudaiappan

The major problem associated with the fabrication of cast metal matrix composites is the agglomeration tendency of the particles in the metal matrix. The agglomeration of the particles in the metal matrix greatly reduces the mechanical properties of the fabricated composite materials. In this work, to reduce the agglomeration tendency of SiC particles in Al matrix, different weight percentages of SiC particles reinforced Al composites were fabricated by the conventional stir casting and the ultrasonic cavitation assisted casting routes. Results indicate that in both the methods, particle distribution was uniform upto certain weight percentage after that agglomeration of particles were observed. The mechanical properties of the as-cast composites were superior to that of the as-cast alloys. Composites fabricated by the ultrasonic cavitation method showed slightly better mechanical properties than the composites fabricated by the conventional stir casting route. From the consolidated results it was also observed that 10 weight % of SiCpreinforced composite fabricated by the ultrasonic cavitation method yields the better mechanical properties when compared to the other composites fabricated in this study. Keywords: Metal Matrix Composites, Stir Casting, Ultrasonic Cavitation, Mechanical Properties, Microstructure, Comparative Study


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1034
Author(s):  
Massoud Malaki ◽  
Alireza Fadaei Tehrani ◽  
Behzad Niroumand ◽  
Manoj Gupta

Metal matrix composites (MMCs) have been developed in response to the enormous demand for special industrial materials and structures for automotive and aerospace applications, wherein both high-strength and light weight are simultaneously required. The most common, inexpensive route to fabricate MMCs or metal matrix nanocomposites (MMNCs) is based on casting, wherein reinforcements like nanoceramics, -carbides, -nitrides, elements or carbon allotropes are added to molten metal matrices; however, most of the mentioned reinforcements, especially those with nanosized reinforcing particles, have usually poor wettability with serious drawbacks like particle agglomerations and therefore diminished mechanical strength is almost always expected. Many research efforts have been made to enhance the affinity between the mating surfaces. The aim in this paper is to critically review and comprehensively discuss those approaches/routes commonly employed to boost wetting conditions at reinforcement-matrix interfaces. Particular attention is paid to aluminum matrix composites owing to the interest in lightweight materials and the need to enhance the mechanical properties like strength, wear, or creep resistance. It is believed that effective treatment(s) may enormously affect the wetting and interfacial strength.


Sign in / Sign up

Export Citation Format

Share Document