A Study on the Estimation of Failure Mode in Impact Analysis Using SPH Method

2011 ◽  
Vol 82 ◽  
pp. 332-337
Author(s):  
Yoshimi Sonoda ◽  
Shoichirou Tokumaru ◽  
Jin Fukazawa

This paper proposes an analysis algorithm that can appropriately distinguish shear failure from bending failure of an RC beam under impact load, by using the SPH method. As structural members, beams generally fail by one of two modes: bending failure caused by excessive bending deformation of the member, and shear failure caused by shear crack growth, leading to rapid destruction at an angle in the web. In this study, to calculate the failure behavior accurately in the local stress field in which shear stress prevails such as when a shear crack occurs, an orthotropic constitutive equation is used. This equation is derived by applying the integrity tensor proposed by Ignacio Carol, Egidio Rizzi and Kasper William, to the usual SPH method. This operation is also extended to the tensile softening characteristic of concrete material. The results confirm that the failure behavior of RC beams under a wide range of conditions can be analyzed accurately by using the proposed algorithm.

Author(s):  
Masuhiro Beppu ◽  
Shinnosuke Kataoka

This study is intended to investigate failure mechanism of plain concrete and reinforced concrete slabs subjected to a medium-velocity impact by conducting impact tests. In a series of tests, a steel projectile with a mass of 8.3kg collided a concrete slab with a thickness of 18cm. In order to examine impact response of the concrete specimen, impact load and reaction force were measured. Test results revealed that the impact velocity corresponding to the scabbing limit was about 40m/s and the failure mode of the concrete specimen subjected to the medium-velocity was similar to the punching shear failure.


2020 ◽  
Vol 10 (20) ◽  
pp. 7082
Author(s):  
Yanlong Chen ◽  
Huidong Cui ◽  
Hai Pu ◽  
Peng Wu ◽  
Liang Chen ◽  
...  

Under coupled compression–shear loading, the failure and instability behavior of inclined pillars is different from that of horizontal pillars. To enhance the reliability and accuracy of pillar strength design, the influence of different inclination angles and loading rates on mechanical property and the failure behavior of inclined pillar should be studied. In this paper, the combined compression and shear test (C-CAST) system was developed, and mechanical properties and macro failure behavior of coal samples under different inclination angles and loading rates were studied, and acoustic emission (AE) technology was used to determine the internal cracking mode of the sample. The results show that with the increase of inclination angle, the peak shear stress of coal sample increases gradually, while the peak axial stress and elastic modulus slightly increase first and then decrease, and reach the maximum value at an inclination angle of 5°. Within the inclination angle range of 0°–15°, with the increase of loading rate, the peak axial stress and elastic modulus of coal samples first increase and then decrease, while the loading rate corresponding to peak axial stress and elastic modulus decreases. Within the inclination angle range of 20°–25°, the peak axial stress and elastic modulus of the sample gradually decrease with the increase of loading rate. The failure mode of coal samples changes from tension-splitting failure (0°–5°), tension–shear composite failure (10°) to single shear failure (15°–25°). Meanwhile, the loading rate has little effect on the failure mode of coal samples, but has a significant effect on the failure degree. When the loading rate is 1.0 and 10 mm/min and the inclination angle ranges from 0°–5°, the proportion of tensile crack is significantly greater than that of the shear crack, and tensile failure is the main failure mode; when the inclination angle ranges from 10°–25°, the proportion of shear crack is more than 50% and increases gradually with the increase of inclination angle, and shear failure is the main failure mode. This law is consistent with the macroscopic failure mode of the sample.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Luzhen Wang ◽  
Hailing Kong

A floor aquifuge usually bends and fails when mining above a confined aquifer, which may lead to water inrush disaster. The floor aquifuge was simplified as a thin disc model in this paper, and a series of coupled bending-seepage tests of sandstone were carried out by a patent test system. The variation characteristics of load-displacement, load-time, and permeability-time were analyzed. The deflection and stress in the thin disc rock samples were deduced; the initiation and propagation of cracks were analyzed. The failure behavior of the thin disc rock samples was described. It shows the following: (1) The bending failure behavior relates to the stress distribution and crack evolution inside the thin disc. (2) The main cause of crack initiation is a tension-shear failure. (3) The 5 mm thickness thin discs form petal-shaped cracks, due to tensile stress, while petal-shaped cracks only appear at the cap block of the 10 mm discs, which are sheared into two pieces along the conical surface with an inclination about 45°. (4) Water inrush occurs after bending failure in the floor aquifuge, and it is an opportune moment to grout along the crack propagation trend lines to prevent the water inrush disasters.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhili Wang ◽  
Lei Lin ◽  
Yangyang Xu ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
...  

AbstractAnthropogenic aerosol (AA) forcing has been shown as a critical driver of climate change over Asia since the mid-20th century. Here we show that almost all Coupled Model Intercomparison Project Phase 6 (CMIP6) models fail to capture the observed dipole pattern of aerosol optical depth (AOD) trends over Asia during 2006–2014, last decade of CMIP6 historical simulation, due to an opposite trend over eastern China compared with observations. The incorrect AOD trend over China is attributed to problematic AA emissions adopted by CMIP6. There are obvious differences in simulated regional aerosol radiative forcing and temperature responses over Asia when using two different emissions inventories (one adopted by CMIP6; the other from Peking university, a more trustworthy inventory) to driving a global aerosol-climate model separately. We further show that some widely adopted CMIP6 pathways (after 2015) also significantly underestimate the more recent decline in AA emissions over China. These flaws may bring about errors to the CMIP6-based regional climate attribution over Asia for the last two decades and projection for the next few decades, previously anticipated to inform a wide range of impact analysis.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 818
Author(s):  
Jonas Richter ◽  
Moritz Kuhtz ◽  
Andreas Hornig ◽  
Mohamed Harhash ◽  
Heinz Palkowski ◽  
...  

Metallic (M) and polymer (P) materials as layered hybrid metal-polymer-metal (MPM) sandwiches offer a wide range of applications by combining the advantages of both material classes. The interfaces between the materials have a considerable impact on the resulting mechanical properties of the composite and its structural performance. Besides the fact that the experimental methods to determine the properties of the single constituents are well established, the characterization of interface failure behavior between dissimilar materials is very challenging. In this study, a mixed numerical–experimental approach for the determination of the mode I energy release rate is investigated. Using the example of an interface between a steel (St) and a thermoplastic polyolefin (PP/PE), the process of specimen development, experimental parameter determination, and numerical calibration is presented. A modified design of the Double Cantilever Beam (DCB) is utilized to characterize the interlaminar properties and a tailored experimental setup is presented. For this, an inverse calibration method is used by employing numerical studies using cohesive elements and the explicit solver of LS-DYNA based on the force-displacement and crack propagation results.


Author(s):  
Amin Rahmat ◽  
Hossein Nasiri ◽  
Marjan Goodarzi ◽  
Ehsan Heidaryan

Purpose This paper aims to introduce a numerical investigation of aquatic locomotion using the smoothed particle hydrodynamics (SPH) method. Design/methodology/approach To model this problem, a simple improved SPH algorithm is presented that can handle complex geometries using updatable dummy particles. The computational code is validated by solving the flow over a two-dimensional cylinder and comparing its drag coefficient for two different Reynolds numbers with those in the literature. Findings Additionally, the drag coefficient and vortices created behind the aquatic swimmer are quantitatively and qualitatively compared with available credential data. Afterward, the flow over an aquatic swimmer is simulated for a wide range of Reynolds and Strouhal numbers, as well as for the amplitude envelope. Moreover, comprehensive discussions on drag coefficient and vorticity patterns behind the aquatic are made. Originality/value It is found that by increasing both Reynolds and Strouhal numbers separately, the anguilliform motion approaches the self-propulsion condition; however, the vortices show different pattern with these increments.


1999 ◽  
pp. 215-233 ◽  
Author(s):  
Norimitsu KISHI ◽  
Hiroshi MIKAMI ◽  
Ken-ichi G. MATSUOKA ◽  
Tomohiro ANDO

Author(s):  
Dongqi Jiang ◽  
Shanquan Liu ◽  
Tao Chen ◽  
Gang Bi

<p>Reinforced concrete – steel plate composite shear walls (RCSPSW) have attracted great interests in the construction of tall buildings. From the perspective of life-cycle maintenance, the failure mode recognition is critical in determining the post-earthquake recovery strategies. This paper presents a comprehensive study on a wide range of existing experimental tests and develops a unique library of 17 parameters that affects RCSPSW’s failure modes. A total of 127 specimens are compiled and three types of failure modes are considered: flexure, shear and flexure-shear failure modes. Various machine learning (ML) techniques such as decision trees, random forests (RF), <i>K</i>-nearest neighbours and artificial neural network (ANN) are adopted to identify the failure mode of RCSPSW. RF and ANN algorithm show superior performance as compared to other ML approaches. In Particular, ANN model with one hidden layer and 10 neurons is sufficient for failure mode recognition of RCSPSW.</p>


2019 ◽  
Vol 347 (1) ◽  
pp. 33-48 ◽  
Author(s):  
Xiang Fan ◽  
Hang Lin ◽  
Hongpeng Lai ◽  
Rihong Cao ◽  
Jie Liu

Sign in / Sign up

Export Citation Format

Share Document