Linear Control for Full Bridge Phase PWM Rectifier

2016 ◽  
Vol 823 ◽  
pp. 453-458
Author(s):  
Mauricio Mauledoux ◽  
Nicolás Linares Ospina ◽  
Angie Julieth Valencia Castañeda ◽  
Oscar Aviles Sanchez

Rectifiers are widely use in areas of industry and commerce to implement equipment which require to be powered by alternating current (AC) source, so that uncontrolled rectification requires an operational requirement study because they only properly works if the rectifier calculated boundary conditions are ideal and invariant. Therefore the implementation of control strategies should be take into account to generate the desired signal performance in the rectifier. This document shows the implementation of different control techniques on the behavior the sinusoidal current in a single-phase rectifier width modulated pulse and resistive load. Consequently, in this work the development of several control strategies are presented, for behavior analysis of signals in a rectifier with width pulse modulation and resistive load. Additionally, a comparison between the developed controllers is performed in order to get the best behavior available for this applications.

2012 ◽  
Vol 516-517 ◽  
pp. 1893-1896
Author(s):  
Shi Jie Yan ◽  
Wen Zhong Gao ◽  
En Hui Chu

Power control method had been widely used because of its simplicity, good dynamic performance, decoupled active and reactive power control for three-phase PWM rectifier. But it is not adapted to single-phase rectifier as power calculating problem. A power tracking control method is proposed for single-phase PWM rectifier. In new method, voltage and current with harmonics are decomposed of Fourier series. Their fundamental components are only extracted in order to calculate active power and reactive power and track requirement value. So the system not only realizes high power factor, sinusoidal current and stable DC link voltage, but also meet the application demand the capability of power regeneration to the power supply. The results of experiment show that the DC link voltage fluctuations should be minimal and the power factor is high. The proposed method is effective and practicable.


Author(s):  
Muhammad Hamza Shahbaz ◽  
Arslan Ahmed Amin

: Because of the consistently expanding energy request, the introduction of a decentralized micro-grid based on energy resources will soon be the most exciting development in the power system. Micro-grids, which are mainly based on inverters, are becoming more popular as they can handle different forms of renewable energy effectively. However, one of the most challenging areas of research is their control. In the last few years, many control strategies have been developed. In this review, different control methods have been discussed that apply to the micro-grid system. Furthermore, the comparative analysis of classical and modern control strategies is also considered. This survey guides the new researchers about all available control strategies and room for improvement towards the optimal solution of the micro-grid control techniques. It also identifies several research gaps and future trends therein as well as provides a solution to manage problems in MGs. The strategies are then compared based on their applicability to different control requirements.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3361
Author(s):  
Nicolas T. D. Fernandes ◽  
Anderson Rocha ◽  
Danilo Brandao ◽  
Braz C. Filho

Although the literature extensively covers the development of battery chargers control strategies, a comparison of these strategies remains a literary gap. The inherent conditions (i.e., State of Health and State of Charge) of each unit in the Battery Energy Storage Systems directly influence the charger control techniques for extending battery lifetime, which makes modular battery chargers an appealing topology for this analysis. This work groups charger control strategies presented in the literature into two: Adapted SoC strategies, directly linked to the field of overstress management, and SoH strategies, which are directly linked to the field of wear-out management. The methodology for comparing the control strategies encompasses battery lifetime, charger, and photovoltaic plant models. Three distinct cases were simulated using real measure data from a solar power plant and a battery model provided by MathWorks®. The results evidence that the Capacity Fade and Energy Throughput strongly depend on the strategy. The controller action evidences the previous statement, as the strategies have different goals that are related to each field. Furthermore, this work analyses the effect of the estimation process in the action of the controller.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Wander Gustavo Rocha Vieira ◽  
Fred Nitzsche ◽  
Carlos De Marqui

In recent decades, semi-active control strategies have been investigated for vibration reduction. In general, these techniques provide enhanced control performance when compared to traditional passive techniques and lower energy consumption if compared to active control techniques. In semi-active concepts, vibration attenuation is achieved by modulating inertial, stiffness, or damping properties of a dynamic system. The smart spring is a mechanical device originally employed for the effective modulation of its stiffness through the use of semi-active control strategies. This device has been successfully tested to damp aeroelastic oscillations of fixed and rotary wings. In this paper, the modeling of the smart spring mechanism is presented and two semi-active control algorithms are employed to promote vibration reduction through enhanced damping effects. The first control technique is the smart-spring resetting (SSR), which resembles resetting control techniques developed for vibration reduction of civil structures as well as the piezoelectric synchronized switch damping on short (SSDS) technique. The second control algorithm is referred to as the smart-spring inversion (SSI), which presents some similarities with the synchronized switch damping (SSD) on inductor technique previously presented in the literature of electromechanically coupled systems. The effects of the SSR and SSI control algorithms on the free and forced responses of the smart-spring are investigated in time and frequency domains. An energy flow analysis is also presented in order to explain the enhanced damping behavior when the SSI control algorithm is employed.


Sign in / Sign up

Export Citation Format

Share Document