808 nm Semiconductor Lasers with Tailored Gain for Mode Shape

2011 ◽  
Vol 84-85 ◽  
pp. 603-606
Author(s):  
Zhong Liang Qiao ◽  
Bao Xue Bo ◽  
Si Yu Zhang ◽  
Xin Gao ◽  
Peng Lu ◽  
...  

We implement the concept of the distributed electrode, which allows to improve the modal behavior of lasers and to reduce spatial-hole burning effects by preferentially localizing current injection in the center of the structure, hence discriminating the optical mode. We report the first realization of distributed electrode lasers emitting at 808 nm with the measured full width at half maximum (FWHM) angle of the minimal horizontal angle as 3.8° while the maximum continuous-wave output power is up to 4 W and high slope efficiencies as high as 0.95 W/A.

2011 ◽  
Vol 84-85 ◽  
pp. 590-593
Author(s):  
Zhong Liang Qiao ◽  
Si Yu Zhang ◽  
Xin Gao ◽  
Peng Lu ◽  
Hui Li ◽  
...  

According to the principle of carrier diffusion, aluminum nitride (AlN) coating, and RIE deep etching technology are implemented, 1064 nm broad area distribution electrode lasers have been obtained exhibiting near single lobe near and far field. We report electrode pattern lasers emitting at 1064 nm with the minimal full width at half maximum (FWHM) horizontal angle of 2.7° while the maximum continuous-wave output power up to 3.65 W and slope efficiencies as high as 0.85 W/A.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 249
Author(s):  
Shuo Jiang ◽  
Bo Liu ◽  
Shengjie Wang

In order to eliminate the nonlinearity in the laser modulation process, the dual-interferometers system is often adopted in the frequency modulation continuous wave (FMCW) laser ranging. However, the dispersion mismatch between the fiber reference interferometer and the measurement interferometer will lead to the decrease in ranging accuracy and resolution. In this paper, a dispersion compensation method based on resampling with a modulated signal is proposed. Since the beat signal of the end face of the delay fiber is not affected by dispersion mismatch, it can be modulated to generate a signal whose phase is proportional to that of the target spatial signal. Then, the modulated signal is regarded as the reference clock to sample the target spatial signal. Thereby, the influence of the dispersion mismatch between the two optical interferometers can be eliminated. In this article, simulation is performed to verify the effect of this method, and an experiment is carried out on the target at the distance of 2.4 m. Experiments show that the full width at half maximum (FWHM) of the distance spectrum after dispersion compensation is consistent with the reflected signal from the end face of the delay fiber, and the standard deviation of multiple measurements reached 10.12 μm.


1991 ◽  
Vol 69 (6) ◽  
pp. 699-701 ◽  
Author(s):  
Scott B. Hassal ◽  
Edward A. Ballik

A novel apparatus was designed to couple 2.45-GHz microwave radiation into a gas discharge. Using this apparatus, continuous-wave 222-nm B → X fluorescence of the KrF excimer system was observed in a binary mixture of chlorine and krypton. The effects of gas composition and total pressure on the fluorescence intensity at a wavelength of 222 nm was investigated. Spectra over the wavelength region of 200–320 nm were recorded for various gas compositions near the optimum total pressures for excimer fluorescence. The 222-nm B → X KrCl excimer transition was apparent in all cases and had a full-width half-maximum (FWHM) of 3 nm. In addition, the 258-nm Cl2 excimer transition was also evident with a FWHM of 5 nm. Both the center frequencies and widths of these transitions were constant for the conditions tested.


2017 ◽  
Vol 9 (4) ◽  
pp. 131 ◽  
Author(s):  
Mohammed Mehdi Bouchene ◽  
Rachid Hamdi ◽  
Qin Zou

We propose a novel semiconductor laser structure. It is composed of three cascaded active sections: a Fabry-Pérot laser section sandwiched between two gain-coupled distributed feedback (DFB) laser sections. We have modeled this multi-section structure. The simulation results show that compared with index- and gain-coupled DFB lasers, a significant reduction in the longitudinal spatial-hole burning can be obtained with the proposed device, and that this leads to a stable single longitudinal mode operation at relatively high optical power with a SMSR exceeding 56dB. Full Text: PDF ReferencesL.A. Coldren, "Monolithic tunable diode lasers", IEEE J. Select. Topics Quant. Electron. 6, 988 (2000) CrossRef O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, L. Backbom, "30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 [micro sign]m wavelength", Electron. Lett. 33(6), 488 (1997). CrossRef N. Kim, J. Shin, E. Sim, C.W. Lee, D.-S. Yee, M.Y. Jeon, Y. Jang, K.H. Park, "Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation", Opt. Expr. 17(16), 13851 (2009). CrossRef M.J. Wallace, R. ORreilly Meehan, R.R Enright, F. Bello, D. Mccloskey, B. Barabadi, E.N. Wang, J.F. Donegan, "Athermal operation of multi-section slotted tunable lasers", Opt. Expr. 25(13), 14426 (2017). CrossRef J.E. Carroll, J.E.A. Whiteaway, R.G.S. Plumb, "Distributed Feedback Semiconductor Lasers", Distributed feedback semiconductor lasers (IEE and SPIE, 1998). CrossRef H. Ghafour-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters (Wiley, 2003). CrossRef D.D. Marcenac, Ph.D dissertation (University of Cambridge, 1993). DirectLink L.M. Zhang, J.E. Carroll, C. Tsang, "Dynamic response of the gain-coupled DFB laser", IEEE J. Quant. Electr. 29, 1722 (1993). CrossRef W. Li, W.-P. Huang, X. Li, J. Hong, "Multiwavelength gain-coupled DFB laser cascade: design modeling and simulation", IEEE J. Quant. Electro. 36(10), 1110 (2000). CrossRef B.M. Mehdi, H. Rachid, in Proc. 3rd Intern. Conf. on Embedded Systems in Telecomm. and Instrument., Annaba, Algeria (2016). DirectLinkC. Henry, "Theory of the linewidth of semiconductor lasers", IEEE J.Quant. Electr. QE-18, 259 (1982). CrossRef K. Takaki, T. Kise, K. Maruyama, N. Yamanaka, M. Funabashi, A. Kasukawa, "Reduced linewidth re-broadening by suppressing longitudinal spatial hole burning in high-power 1.55-/spl mu/m continuous-wave distributed-feedback (CW-DFB) laser diodes", IEEE J. Quant. Electr. 39, 1060 (2003) CrossRef


2011 ◽  
Vol 84-85 ◽  
pp. 598-602
Author(s):  
Si Yu Zhang ◽  
Zhong Liang Qiao ◽  
Bao Xue Bo ◽  
Xin Gao ◽  
Yi Qu ◽  
...  

Integrated 808 nm wavelength super-luminescent diodes (SLDs) with a ring seed source and a tapered amplifier were fabricated tilted at 8° from the facet normal. Max-output power of 700 mW was obtained in continuous wave (CW) mode under room temperature, and the full width at half maximum (FWHM) of the emission spectrum is 36 nm.


2011 ◽  
Vol 84-85 ◽  
pp. 594-597
Author(s):  
Si Yu Zhang ◽  
Zhong Liang Qiao ◽  
Xin Gao ◽  
Yi Qu ◽  
Guo Jun Liu ◽  
...  

High-performance 785 nm wavelength super-luminescent diodes (SLDs) with ring cavity were fabricated. The maximum output power of 100 mW was obtained in continuous wave (CW) mode under room temperature. The full width at half maximum (FWHM) of the emission spectrum was 24 nm.


2021 ◽  
Vol 11 (15) ◽  
pp. 6919
Author(s):  
Majid Masnavi ◽  
Martin Richardson

A series of experiments is described which were conducted to measure the absolute spectral irradiances of laser plasmas created from metal targets over the wavelength region of 123–164 nm by two separate 1.0 μm lasers, i.e., using 100 Hz, 10 ns, 2–20 kHz, 60–100 ns full-width-at-half-maximum pulses. A maximum radiation conversion efficiency of ≈ 3%/2πsr is measured over a wavelength region from ≈ 125 to 160 nm. A developed collisional-radiative solver and radiation-hydrodynamics simulations in comparison to the spectra detected by the Seya–Namioka-type monochromator reveal the strong broadband experimental radiations which mainly originate from bound–bound transitions of low-ionized charges superimposed on a strong continuum from a dense plasma with an electron temperature of less than 10 eV.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adam Huang ◽  
Chung-Wei Lee ◽  
Hon-Man Liu

AbstractMoyamoya disease (MMD) is a chronic, steno-occlusive cerebrovascular disorder of unknown etiology. Surgical treatment is the only known effective method to restore blood flow to affected areas of the brain. However, there are lack of generally accepted noninvasive tools for therapeutic outcome monitoring. As dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) is the standard MR perfusion imaging technique in the clinical setting, we investigated a dataset of nineteen pediatric MMD patients with one preoperational and multiple periodic DSC MRI examinations for four to thirty-eight months after indirect revascularization. A rigid gamma variate model was used to derive two nondeconvolution-based perfusion parameters: time to peak (TTP) and full width at half maximum (FWHM) for monitoring transitional bolus delay and dispersion changes respectively. TTP and FWHM values were normalized to the cerebellum. Here, we report that 74% (14/19) of patients improve in both TTP and FWHM measurements, and whereof 57% (8/14) improve more noticeably on FWHM. TTP is in good agreement with Tmax in estimating bolus delay. Our study data also suggest bolus dispersion estimated by FWHM is an additional, informative indicator in pediatric MMD monitoring.


2016 ◽  
Vol 09 (02) ◽  
pp. 1650023 ◽  
Author(s):  
Bin Peng ◽  
Jianying Jiang ◽  
Guo Chen ◽  
Lin Shu ◽  
Jie Feng ◽  
...  

Highly c-axis oriented aluminum nitrade (AlN) films were successfully deposited on flexible Hastelloy tapes by middle-frequency magnetron sputtering. The microstructure and piezoelectric properties of the AlN films were investigated. The results show that the AlN films deposited directly on the bare Hastelloy substrate have rough surface with root mean square (RMS) roughness of 32.43[Formula: see text]nm and its full width at half maximum (FWHM) of the AlN (0002) peak is [Formula: see text]. However, the AlN films deposited on the Hastelloy substrate with Y2O3 buffer layer show smooth surface with RMS roughness of 5.46[Formula: see text]nm and its FWHM of the AlN (0002) peak is only [Formula: see text]. The piezoelectric coefficient d[Formula: see text] of the AlN films deposited on the Y2O3/Hastelloy substrate is larger than three times that of the AlN films deposited on the bare Hastelloy substrate. The prepared highly c-axis oriented AlN films can be used to develop high-temperature flexible SAW sensors.


Sign in / Sign up

Export Citation Format

Share Document