Effect of Friction Coefficient on the Stiffness Excitation of Gear

2011 ◽  
Vol 86 ◽  
pp. 713-716 ◽  
Author(s):  
Yu Mei Hu ◽  
De Shuang Xue ◽  
Yang Jun Pi

This study addresses the effect of different friction coefficients on the stiffness excitation of gear using finite element technique. Firstly, the simulation model of single pair of gear teeth mesh is established, and the effect of friction coefficient on the composite stiffness values of the teeth meshing is studied. After that, simulation model of multiple pairs of gear teeth meshing is created and the normal load distributions under different friction coefficients in a single meshing cycle are calculated using quasi-static calculation method. Finally, the relationship between friction coefficient and stiffness excitation of gear system is obtained. The investigation results indicate that at the alternation place of single tooth meshing and double teeth meshing, the stiffness excitation of the system is greater under larger friction coefficient when double teeth meshing change into single tooth meshing, while the opposite situation occur when single tooth meshing change into double teeth meshing. The amplitude value of stiffness variation for single pair of teeth meshing under different friction coefficients is 2.12%, while the amplitude value of teeth loads variation for multiple pairs of teeth meshing under different friction coefficients is 22.87%.

Author(s):  
Diego A. Lorio ◽  
Facundo J. Wedekamper ◽  
Fabiano Bertoni ◽  
Facundo S. Lopéz ◽  
George C. Campello ◽  
...  

The offshore industry has presented an increasing demand over the last few decades, requiring the production in deep water fields. The end fittings (EF) are critical points within the production system. Therefore, structural and fatigue analyses are essential in the EF design, making it necessary to know the stress distribution experienced by the armor wires along the EF. Numerical and analytical models are often used in order to assess the stress state. However, characteristics like geometries, materials and interactions must be previously known in order to apply these models. The purpose of this work was to analyze the arithmetic mean surface roughness (Ra) and to determine the friction coefficient (μ) for two types of armor wires when in contact with resin used to fill the EF. The resin used in the interaction with the armor wires was an epoxy filled with metallic particles. For the experimental analysis straight carbon steel armor wires with different cross-sections, typically used in 2.5″ and 8″ flexible pipes were used. Surface profile was obtained for each wire by repeated measurements along two lines over each surface. A total of three repetitions were performed in each measure line. Longitudinal roughness was determined through these profiles. Finally, friction coefficients were obtained experimentally by means of a device that allows to simulate the wire pullout and sliding process. In this device, two epoxy pads were put in contact with the surface of the analyzed wire sample, and rigid bodies in contact with the pads were used to ensure that the normal load applied is transmitted uniformly through the contact surface. The displacement rate, contact pressure between the surface of the wire and the epoxy resin pads, and axial force were recorded. The roughness in the longitudinal direction of the wires was analyzed through descriptive statistic and compared by Student’s “t” test. The highest values were obtained on wires with larger sections. This behavior is exposed on the results obtained for the friction coefficient as a function of the contact pressure. Friction coefficient for both wires was analyzed and compared using a Mann-Whitney U test. Both friction coefficients have a positive slope, indicating a small increase as the contact pressure raise. The significance value obtained for the means comparisons was p = 0.0001 and confirms that the average friction coefficient of the two wires are really different. Because of that, we conclude that is necessary to treat the EF project for different flexible pipes differentially.


2014 ◽  
Vol 903 ◽  
pp. 33-38
Author(s):  
Mohammad Asaduzzaman Chowdhury ◽  
Dewan Muhammad Nuruzzaman ◽  
Mohammad Lutfar Rahaman

In this study, friction coefficients of different steel materials are investigated and compared. Experiments are carried out when different types of steel discs such as stainless steel 201 (SS 201), stainless steel 301 (SS 301) and mild steel slide against mild steel pin. Experiments are conducted at normal load 5, 7.5 and 10 N, sliding velocity 0.5, 0.75 and 1 m/s and relative humidity 70%. The effects of duration of rubbing on the friction coefficient of different steel materials are investigated. Results show that during friction process, test disc takes less time to stabilize with the increased normal load or sliding velocity. It is found that friction coefficient decreases with the increase in normal load while it increases with the increase in sliding velocity for all the tested materials. As a comparison, it is found that at identical operating conditions, friction coefficients are different for different steel materials depending on normal load or sliding velocity.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 611
Author(s):  
Yeon-Woong Choe ◽  
Sang-Bo Sim ◽  
Yeon-Moon Choo

In general, this new equation is significant for designing and operating a pipeline to predict flow discharge. In order to predict the flow discharge, accurate determination of the flow loss due to pipe friction is very important. However, existing pipe friction coefficient equations have difficulties in obtaining key variables or those only applicable to pipes with specific conditions. Thus, this study develops a new equation for predicting pipe friction coefficients using statistically based entropy concepts, which are currently being used in various fields. The parameters in the proposed equation can be easily obtained and are easy to estimate. Existing formulas for calculating pipe friction coefficient requires the friction head loss and Reynolds number. Unlike existing formulas, the proposed equation only requires pipe specifications, entropy value and average velocity. The developed equation can predict the friction coefficient by using the well-known entropy, the mean velocity and the pipe specifications. The comparison results with the Nikuradse’s experimental data show that the R2 and RMSE values were 0.998 and 0.000366 in smooth pipe, and 0.979 to 0.994 or 0.000399 to 0.000436 in rough pipe, and the discrepancy ratio analysis results show that the accuracy of both results in smooth and rough pipes is very close to zero. The proposed equation will enable the easier estimation of flow rates.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 962
Author(s):  
Andrzej Marczuk ◽  
Vasily Sysuev ◽  
Alexey Aleshkin ◽  
Petr Savinykh ◽  
Nikolay Turubanov ◽  
...  

Mixing is one of the most commonly used processes in food, animal feed, chemical, cosmetic, etc., industries. It is supposed to provide high-quality homogenous, nutritious mixtures. To provide appropriate mixing of materials while maintaining the process high efficiency and low energy consumption it is crucial to explore and describe the material flow caused by the movement of mixing elements and the contact between particles. The process of mixing is also affected by structural features of the machine components and the mixing chamber, speed of mixing, and properties of the mixed materials, such as the size of particles, moisture, friction coefficients. Thus, modeling of the phenomena that accompany the process of mixing using the above-listed parameters is indispensable for appropriate implementation of the process. The paper provides theoretical power calculations that take into account the material speed change, the impact of the material friction coefficient on the screw steel surface and the impact of the friction coefficient on the material, taking into account the loading height of the mixing chamber and the chamber loading value. Dependencies between the mixer power and the product degree of fineness, rotational speed of screw friction coefficients, the number of windings per length unit, and width of the screw tape have been presented on the basis of a developed model. It has been found that power increases along with an increase in the value of these parameters. Verification of the theoretical model indicated consistence of the predicted power demand with the power demand determined in tests performed on a real object for values of the assumed, effective loading, which was 65–75%.


2014 ◽  
Vol 693 ◽  
pp. 305-310 ◽  
Author(s):  
Eva Labašová

The coefficient of friction for the bronze material (CuZn25Al6) with insert graphite beds and other bronze material (CuSn12) are investigated in this paper. Friction coefficient was investigated experimentally by the testing machine Tribotestor`89 which uses the principle of the ring on ring method. The external fixed bushing was exposed to the normal load of the same size in all tests. Process of load was increased from level 50 N to 600 N during run up 300 s, after the run up the appropriate level of load was held. The internal bushing performed a rotational movement with constant sliding speed. The value of sliding speed was changed individually for every sample (v = 0.2 (0.3, 0.4) m.s-1). The forth test had a rectangular shape of sliding speed with direct current component 0.3 m.s-1 and the amplitude 0.1 m.s-1 period 300 s, the whole test took 2100 s. The obtained results reveal that friction coefficient increase with the increase of sliding speed.


1999 ◽  
Vol 123 (1) ◽  
pp. 219-223 ◽  
Author(s):  
Ozgen Akalin ◽  
Golam M. Newaz

A bench friction test system for piston ring and liner contact, which has high stroke length and large contact width has been used to verify the analytical mixed lubrication model presented in a companion paper (Part 1). This test system controls the speed, temperature and lubricant amount and records the friction force, loading force, crank angle signal and contact temperature data simultaneously. The effects of running speed, applied normal load, contact temperature and surface roughness on friction coefficient have been investigated for conventional cast-iron cylinder bores. Friction coefficient predictions are presented as a function of crank angle position and results are compared with bench test data. Analytical results correlated well with bench test results.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qin Lian ◽  
Chunxu Yang ◽  
Jifei Cao

The transition between static and kinetic frictions of steel/shale pairs has been studied. It was found that the coefficient of friction decreased exponentially from static to dynamic friction coefficient with increasing sliding displacement. The difference between static and dynamic friction coefficients and the critical distance Dc under the dry friction condition is much larger than that under the lubricated condition. The transition from static to dynamic friction coefficient is greatly affected by the normal load, quiescent time, and sliding velocity, especially the lubricating condition. Maintaining continuous lubrication of the contact area by the lubricant is crucial to reduce or eliminate the stick-slip motion. The results provide an insight into the transition from static to dynamic friction of steel/shale pairs.


2018 ◽  
Vol 9 (1) ◽  
pp. 201-210 ◽  
Author(s):  
Seong Han Kim

Abstract. This study proposes a worm gear efficiency model considering misalignment in electric power steering systems. A worm gear is used in Column type Electric Power Steering (C-EPS) systems and an Anti-Rattle Spring (ARS) is employed in C-EPS systems in order to prevent rattling when the vehicle goes on a bumpy road. This ARS plays a role of preventing rattling by applying preload to one end of the worm shaft but it also generates undesirable friction by causing misalignment of the worm shaft. In order to propose the worm gear efficiency model considering misalignment, geometrical and tribological analyses were performed in this study. For geometrical analysis, normal load on gear teeth was calculated using output torque, pitch diameter of worm wheel, lead angle and normal pressure angle and this normal load was converted to normal pressure at the contact point. Contact points between the tooth flanks of the worm and worm wheel were obtained by mathematically analyzing the geometry, and Hertz's theory was employed in order to calculate contact area at the contact point. Finally, misalignment by an ARS was also considered into the geometry. Friction coefficients between the tooth flanks were also researched in this study. A pin-on-disk type tribometer was set up to measure friction coefficients and friction coefficients at all conditions were measured by the tribometer. In order to validate the worm gear efficiency model, a worm gear was prepared and the efficiency of the worm gear was predicted by the model. As the final procedure of the study, a worm gear efficiency measurement system was set and the efficiency of the worm gear was measured and the results were compared with the predicted results. The efficiency considering misalignment gives more accurate results than the efficiency without misalignment.


2012 ◽  
Vol 468-471 ◽  
pp. 1380-1383
Author(s):  
Hui Wang ◽  
Yu Xin Wang

Rigidity of oil film is an important hydrostatic support performance of the slipper pair. This paper establishes the mathematics model of hydrostatic support structure on the basis of considering secondary force. And establish the simulation model of rigidity of oil film by using the toolbox of Simulink. Study the dynamic characteristics of rigidity of oil film under the influence of secondary force through computer simulation. And reach a conclusion that the impact of secondary force on rigidity of oil film has a relationship with friction coefficient and work pressure.


2013 ◽  
Vol 273 ◽  
pp. 138-142 ◽  
Author(s):  
Ping Lin ◽  
Zi Chun Xie ◽  
Qing Li

The present study focused on the influence of the friction coefficient on the deformation behavior in large strain extrusion machining (LSEM). A series of simulation results of effective strain were obtained under different friction coefficients by conducting finite element simulations with a FEM code. The results show that LSEM can produce different effective strains by changing the friction coefficients, thus enabling the fabrication of bulk nanostructured materials. An analysis of the variation of effective strain through the chip demonstrated that the chip deformed much more inhomogeneously when the friction coefficient became larger. The obtained results can offer valuable guidelines for later LSEM studies.


Sign in / Sign up

Export Citation Format

Share Document