State of Art on Vapour Smoothing of Fused Deposition Modelling Components

2021 ◽  
Vol 903 ◽  
pp. 57-63
Author(s):  
S.M. Basha ◽  
M.M. Basha ◽  
N. Venkaiah ◽  
M.R. Shankar

Fused Deposition Modelling (FDM) is one of the additive manufacturing processes which can produce prototypes or functional components without the use of fixtures, and the lead time required is reduced drastically compared to traditional machining processes. The application of the FDM process in the biomedical and casting industries is limited by its poor surface roughness which is most generally caused by the staircase effect and chordal error of the 3D model. Owing to the drawbacks of mechanical based finishing techniques, researchers have come up with a new technique known as Vapour Smoothing (VS). In this work, past literature of the VS process of FDM components is reported and it has been seen that the VS process is giving a promising improvement in surface roughness of FDM components.

2017 ◽  
Vol 23 (6) ◽  
pp. 1226-1236 ◽  
Author(s):  
Ashu Garg ◽  
Anirban Bhattacharya ◽  
Ajay Batish

Purpose The purpose of this paper is to investigate the influence of low-cost chemical vapour treatment process on geometric accuracy and surface roughness of different curved and freeform surfaces of fused deposition modelling (FDM) specimens build at different part building orientations. Design/methodology/approach Parts with different primitive and curved surfaces are designed and modelled to build at three different part orientations along X orientation (vertical position resting on side face), Y orientation (horizontal position resting on base) and Z orientation (upright position). Later, the parts are post-processed by cold vapours of acetone. Geometric accuracy and surface roughness are measured both before and after the chemical treatment to investigate the change in geometric accuracy, surface roughness of FDM parts. Findings The results indicate that surface roughness is reduced immensely after cold vapour treatment with minimum variation in geometric accuracy of parts. Parts build vertically over its side face (X orientation) provides the overall better surface finish and geometric accuracy. Originality/value The present study provides an approach of post-built treatment for FDM parts and observes a significant improvement in surface finish of the components. The present approach of post-built treatment can be adopted to enhance the surface quality as well as to achieve desired geometric accuracy for different primitive, freeform/curved surfaces of FDM samples suitable for functional components as well as prototypes.


2020 ◽  
Vol 14 (3) ◽  
pp. 7296-7308
Author(s):  
Siti Nur Humaira Mazlan ◽  
Aini Zuhra Abdul Kadir ◽  
N. H. A. Ngadiman ◽  
M.R. Alkahari

Fused deposition modelling (FDM) is a process of joining materials based on material entrusion technique to produce objects from 3D model using layer-by-layer technique as opposed to subtractive manufacturing. However, many challenges arise in the FDM-printed part such as warping, first layer problem and elephant food that was led to an error in dimensional accuracy of the printed parts especially for the overhanging parts. Hence, in order to investigate the manufacturability of the FDM printed part, various geometrical and manufacturing features were developed using the benchmarking artifacts. Therefore, in this study, new benchmarking artifacts containing multiple overhang lengths were proposed. After the benchmarking artifacts were developed, each of the features were inspected using 3D laser scanner to measure the dimensional accuracy and tolerances. Based on 3D scanned parts, 80% of the fabricated parts were fabricated within ±0.5 mm of dimensional accuracy as compared with the CAD data. In addition, the multiple overhang lengths were also successfully fabricated with a very significant of filament sagging observed.


2019 ◽  
Vol 821 ◽  
pp. 137-143 ◽  
Author(s):  
Pavan Kumar Gurrala ◽  
Brijesh Tripathi

In the current technological evolution, additive manufacturing is taking a lead role in manufacturing of components for both prototyping as well as finished products. Metallization of the polymer parts has high potential to add value in-terms of metallic luster, improved strength, long shelf-life and better radiation resistance. Standard acid copper plating process has been adopted for deposition of copper on polymer parts manufactured by fused deposition modelling (FDM) technique. The parameters namely the etching time, voltage and the surface finish of the manufactured FDM parts are studied for their influence on the surface quality. Experiments have been designed using design of experiments strategy. Experiments have been conducted and surface roughness has been measured. Influence of each of the three parameters has been discussed in detail. For the reported process the optimal value of etching time of Acrylonitrile Butadiene Styrene (ABS) has been found in the range of 30 to 60 minutes along with applied voltage in the range of 1.5 to 2.5 Volts for copper electroplating.


2016 ◽  
Vol 22 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Leopoldo Ruiz-Huerta ◽  
Yara Cecilia Almanza-Arjona ◽  
Alberto Caballero-Ruiz ◽  
Homero Alberto Castro-Espinosa ◽  
Celia Minerva Díaz-Aguirre ◽  
...  

Purpose – The purpose of this study is to suggest the joint use of computer-aided design (CAD) and additive manufacturing (AM) technology for the fabrication of custom-made moulds, designed for the manufacture of polymethyl methacrylate (PMMA) implants for cranio-maxillofacial reconstruction to reduce their fabrication time. Even though tailor-made skull prostheses with a high technological level and state-of-the-art materials are available in the market, they are not always accessible to the general population in developing countries. Design/methodology/approach – Computed tomography data were handled to create a three-dimensional (3D) model of the injury of the patient, by reconstructing Digital Imaging and Communications in Medicine (DICOM) images into an Standard Tessellation Language (STL) file that was further used to design the corresponding implant using CAD software. Accordingly, a two-piece core and cavity moulds that replicated the implant geometry was also CAD designed. The 3D-CAD data were sent to an AM machine (fused deposition modelling) and the moulds were fabricated using polycarbonate as thermoplastic material. A reacting mixture to produce PMMA was poured directly into the fabricated moulds, and left to polymerise until cure. Finally, a clear bubble-free case of study PMMA implant was obtained. Findings – The fabrication of CAD-designed moulds with AM, replacing the production of the injury model, resulted in the reduction of the lead-time in the manufacturing of PMMA around 45 per cent. Additionally, the implant showed better fit than the one produced by conventional process. The use of AM moulds for the fabrication of PMMA implants has demonstrated the reduction in lead-time, which potentially can reduce the waiting time for patients. Social implications – Currently, the demand of cranio-maxillofacial implants at only the Hospital General de México “Dr Eduardo Liceaga” (HGM) is 4,000 implants per year, and the average waiting time for each patient is between 5 and 10 weeks, including third-party services’ delays and the time needed to obtain the economical resources by the patient. Public hospitals in Mexico lack manufacturing facilities, so patients have to make use of laboratories abroad and most of the population have no access to them. The implementation of this suggested procedure in public hospitals may improve the accuracy of the implant, increase the number of patients attended per year (up to 83 per cent) and the reduction in waiting time can also reduce mortality and infection rates. Originality/value – The authors of this paper suggest the joint use of CAD and AM technologies to significantly reduce the production time of PMMA implants by producing moulds rather than the injury model, maintaining the general terms and known steps of the process already established for PMMA implants.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 190
Author(s):  
Nur’ain Wahidah Ya Omar ◽  
Norshah Aizat Shuaib ◽  
Mohd Haidiezul Jamal Ab Hadi ◽  
Azwan Iskandar Azmi ◽  
Muhamad Nur Misbah

Carbon-fiber-reinforced plastic materials have attracted several applications, including the fused deposition modelling (FDM) process. As a cheaper and more environmentally friendly alternative to its virgin counterpart, the use of milled recycled carbon fiber (rCF) has received much attention. The quality of the feed filament is important to avoid filament breakage and clogged nozzles during the FDM printing process. However, information about the effect of material parameters on the mechanical and physical properties of short rCF-reinforced FDM filament is still limited. This paper presents the effect of fiber loading (10 wt%, 20 wt%, and 30 wt%) and fiber size (63 µm, 75 µm, and 150 µm) on the filament’s tensile properties, surface roughness, microstructure, porosity level, density, and water absorptivity. The results show that the addition of 63 µm fibers at 10 wt% loading can enhance filament tensile properties with minimal surface roughness and porosity level. The addition of rCF increased the density and reduced the material’s water intake. This study also indicates a clear trade-off between the optimized properties. Hence, it is recommended that the optimization of rCF should consider the final application of the product. The findings of this study provide a new manufacturing strategy in utilizing milled rCF in potential 3D printing-based applications.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2608 ◽  
Author(s):  
Mohammadreza Lalegani Dezaki ◽  
Mohd Khairol Anuar Mohd Ariffin ◽  
Mohd Idris Shah Ismail

Fused deposition modelling (FDM) opens new ways across the industries and helps to produce complex products, yielding a prototype or finished product. However, it should be noted that the final products need high surface quality due to their better mechanical properties. The main purpose of this research was to determine the influence of computer numerical control (CNC) machining on the surface quality and identify the average surface roughness (Ra) and average peak to valley height (Rz) when the specimens were printed and machined in various build orientations. In this study, the study samples were printed and machined to investigate the effects of machining on FDM products and generate a surface comparison between the two processes. In particular, the block and complex specimens were printed in different build orientations, whereby other parameters were kept constant to understand the effects of orientation on surface smoothness. As a result, wide-ranging values of Ra and Rz were found in both processes for each profile due to their different features. The Ra values for the block samples, printed samples, and machined samples were 21, 91, and 52, respectively, whereas the Rz values were identical to Ra values in all samples. These results indicated that the horizontal surface roughness yielded the best quality compared to the perpendicular and vertical specimens. Moreover, machining was found to show a great influence on thermoplastics in which the surfaces became smooth in the machined samples. In brief, this research showed that build orientation had a great effect on the surface texture for both processes.


Sign in / Sign up

Export Citation Format

Share Document