Liquidation of Fires of Photovoltaic Panels

2014 ◽  
Vol 1001 ◽  
pp. 342-349
Author(s):  
Miroslav Šimčák ◽  
Edita Majerová

Solar energy is the most important source of renewable energy. At present, the consumption of energy resources is very high and the existing stocks are extremely limited. This paper considers the acquisition of energy through the photoelectric effect, whereas the rapidly increasing demand for photovoltaic panels and solar power. The question is how to design the proper size and location of the photovoltaic cell, not only in terms of the effectiveness of economic recovery, to achieve the greatest energy utilization but particularly in terms of fire protection. Data on fires photovoltaic power plant were processed by statistical methods, because we do not know the relevant estimates the frequency of fires.

2012 ◽  
Vol 16 (suppl. 1) ◽  
pp. 159-171 ◽  
Author(s):  
Zoltan Corba ◽  
Vladimir Katic ◽  
Boris Dumnic ◽  
Dragan Milicevic

In this study, a simulation model of in-grid solar-to-electrical energy conversion system is presented. In this case, the in-grid solar-to-electrical energy conversion system is small photovoltaic power plant, which was constructed by the Center for Renewable Energy and Power Quality from Faculty of Technical Sciences (FTS). Equivalent circuit diagram of photovoltaic cell is described which was used to develop the simulation model of modules. Possible types and topologies of inverters are also described. The photovoltaic power plant is described briefly, because it is necessary to understand the simulation model. The result of simulation is an electricity annual production by the power plant. These results were compared with the real values, while its get a good overlap. The paper also presents the modern modeling methods developed at Faculty of Technical Sciences in the Laboratory for RES systems.


2012 ◽  
Vol 608-609 ◽  
pp. 65-69
Author(s):  
Xiao Fan Yang ◽  
Zhi Long Xu ◽  
Chao Li ◽  
Zhong Ming Huang

As the development trend of solar energy, which is a green way of energy utilization, photovoltaic power generation has been a research hotspot of solar energy utilization technologies. Using the concentrating and tracking technology to increase the illumination intensity, and obtain more electrical energy, that will reduce the cost of the photovoltaic power generation system sharply. A kind of steric and multilevel concentrator for photovoltaic generation is introduced in this paper, whose concentration ratio is 3. The operating factor of plane mirrors and performance price ratio of the system is increased for optimizing the condensation parameters and structure of the concentrator.


2005 ◽  
Vol 9 (3) ◽  
pp. 15-23 ◽  
Author(s):  
Fajik Begic ◽  
Anes Kazagic

Along with the current processes of restructuring of Energy power system of Bosnia and Herzegovina, liberalization of the electricity market, and modernization of the existing power plants, Bosnia and Herzegovina must turn to the utilization of renewable resources in reason able dynamics as well. Respecting this policy, the initial Valuation of the potential of renewable erg resources in Bosnia and Herzegovina is per formed. The methodology of evaluation of wind energy utilization is presented in this paper, as well as some other aspects of utilization of the renewable energy resources in Bosnia and Herzegovina. Implementation of selected projects should improve sustainability of energy power production in Bosnia and Herzegovina, by reducing the total emission of carbon dioxide originated from energy power system of Bosnia and Herzegovina.


Energy is an essential component in supporting people’s daily lives and is a significant economical element in development of the country. The eventual depletion of conventional energy resources and their harmful impacts on environment as well as the rising energy costs and the limitations of new energy resources and technologies have pushed efficient energy management to the top of the agenda. But how the energy utilization can be managed? A simple answer to this is viable and real time metering, which enables calculation of run time energy consumption and obtaining the real-time as well as cumulative cost. In this research an Innovative hardware and IoT based solution to this problem is availed that could provide live information related to consumption of electricity by various appliances. The methodology used in this research is mainly based on a hardware tool named Elite 440 which is a meter and provides the data about various electrical parameters. This data so obtained is made visible on the dashboard in a user friendly. The data so visible includes various parameters like voltage, current, power factor etc. Also the data so obtained on the dashboard gets updated in each five minutes and simultaneously the cost gets updated which makes it real time monitoring System.


2016 ◽  
Vol 23 (1) ◽  
pp. 9-32
Author(s):  
Tadeusz Rodziewicz ◽  
Aleksander Zaremba ◽  
Maria Wacławek

Abstract In this paper possibilities and limits of use of solar energy (like the best efficiencies of PV cells, world records and ‘notable exceptions’) were shown. Also some new ideas and concepts in photovoltaics (like new photovoltaic power plants or energy storage) were presented. Additionally authors try to predict development of solar power industry.


Author(s):  
Shane Canavan ◽  
Alexander Barron ◽  
Judith Cohen ◽  
Daniel J. Graham ◽  
Richard J. Anderson

Most metro rail systems worldwide are facing increasing demand and the need to deliver additional capacity in key corridors. Although total capacity reflects the combination of train capacity and frequency, increasing frequency is the primary strategy to increase capacity on existing lines where infrastructure is fixed. Higher frequencies also increase efficiency, by attracting more passengers and making existing journeys faster, thereby making better use of expensive rail infrastructure and increasing both metro revenues and wider economics benefits to the cities they serve. This paper is based on a study conducted for the Community of Metros, a worldwide group of metro systems, which surveyed 17 high frequency lines. The paper first documents the characteristics of high frequency lines [with 25 trains per hour (tph) or more defined as “high frequency” and 30 tph or more as “very high frequency”] and presents the various constraints to higher frequency operations, including how they interact and the various possible solutions. Five main categories of constraints were identified, relating to signaling and train control, station and train crowding, fleet, terminal turnarounds, and service complexity. To achieve the highest frequencies, it is essential for metro systems to take a holistic approach and identify not only the immediate constraints but also secondary and tertiary constraints that may prevent the full benefits of improvements from being realized. This paper provides guidance to those operating, funding, planning, and designing metro systems in how to maximize frequency and thereby deliver greater benefits to riders, transit agencies, and stakeholders.


2021 ◽  
Vol 8 (1) ◽  
pp. 110-119
Author(s):  
Qian He ◽  
Hongfei Zheng ◽  
Xinglong Ma ◽  
Ge Wang ◽  
◽  
...  

Agricultural greenhouses are commonly built around cities to supply residents with agricultural products or green plants. With an increasing demand for plants’ growing environment, the temperature and illumination inside the greenhouses are counted especially during cold winter. This paper proposes a new construction idea of an energy-saving agricultural greenhouse, by which a solar energy collector is added onto the agricultural greenhouse to improve the energy utilization efficiency. Besides, the solar collector does not occupy extra land resource and merely influence the illumination inside the greenhouse. The design and modeling of solar system are introduced in accordance with the actual parameters of agricultural greenhouse. Then the characteristics of energy collection and inner house’s illumination are elaborated by simulation. It shows that when the inclination incident angle of the sunlight ranges from -38° to 38°, the receiving efficiency of ray in receiver is more than 80%. This implies that the system can work about 5 hours in heat collection. The light environment and the thermal environment are both important. When scattered and direct light are set 40% and 60% of daylight, respectively, the illumination of ground is up to 8.38×105 Lux. The minimum illumination is not less than 4.22×105 Lux. In addition, the illumination of rear wall ranges from 3.05×105 Lux to 7.62×105 Lux. Thus, the light environment in the greenhouse is not influenced and all the indoor activities could be maintained. Finally, local meteorological data are combined with simulated solar collection results to evaluate the economy. It shows that the system could provide about 1887.8 MJ/m2 in six cold months, which approximately equals to 6153.9$ per year.


2021 ◽  
Author(s):  
Xiaopu Peng ◽  
Tathagata Bhattacharya ◽  
Ting Cao ◽  
Jianzhou Mao ◽  
Taha Tekreeti ◽  
...  

Abstract To develop environmental friendly and energy-efficient data centers, it is prudent to leverage on-site renewable sources like solar and wind. Data centers deploy distributed UPS systems to improve efficiency, scalability, and reliability of UPS systems, thereby handling the intermittent nature of renewable energy. We propose a renewableenergy manager called REDUX to (1) offer a smart way of managing energy supply of data centers powered by grid and renewable energy and (2) maintain a desirable balance between energy cost and system performance. To achieve this overarching objective, REDUX judiciously orchestrates distribute UPS devices (i.e., recharge or discharge) to allocate energy resources when (1) grid price is at low or high states or (2) renewable energy generation is at a low or fluctuate level. REDUX not only guarantees the stable operation of daily workload conditions, but also cuts back the energy cost of data centers by improving power resource utilization. Compared with the existing strategies, REDUX demonstrates a prominent capability of mitigating average peak workload and boosting renewable-energy utilization.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 138
Author(s):  
Hee-Seok Kim

Advanced energy conversion and storage systems have attracted much attention in recent decades due to the increasing demand for energy and the environmental impacts of non-sustainable energy resources [...]


2021 ◽  
Vol 9 ◽  
Author(s):  
Qinhao Xing ◽  
Meng Cheng ◽  
Shuran Liu ◽  
Qianliang Xiang ◽  
Hailian Xie ◽  
...  

The intermittency of wind and solar power generation brings risks to the safety and stability of the power system. In order to maximize the utilization of renewables, optimal control and dispatch methods of the Distributed Energy Resources including the generators, energy storage and flexible demand are necessary to be researched. This paper proposes an optimization and dispatch model of an aggregation of Distributed Energy Resources in order to facilitate the integration of renewables while considering the benefits for dispatchable resources under time-of-use tariff. The model achieves multi-objective optimization based on the constraints of day-ahead demand forecast, wind and solar generation forecast, electric vehicles charging routines, energy storage and DC power flow. The operating cost, the renewable energy utilization and the revenues of storages and electric vehicles are considered and optimized simultaneously through the min–max unification method to achieve the multi-objective optimization. The proposed model was then applied to a modified IEEE-30 bus case, demonstrating that the model is able to reconcile all participants in the system. Sensitivity analysis was undertaken to study the impact of initial states of the storages on the revenues to the resource owners.


Sign in / Sign up

Export Citation Format

Share Document