Bioinfomatics Analysis of the Anthocyanidin synthase Gene in Tree Peony

2014 ◽  
Vol 1010-1012 ◽  
pp. 1181-1184
Author(s):  
Yan Zhao Zhang ◽  
Yan Wei Cheng ◽  
Hui Yuan Ya ◽  
Chao Yun ◽  
Jian Ming Han ◽  
...  

Anthocyanin mainly responsible for flowers color in many plant species, it also accumulated in response to lots of environmental stress to reduce the damage to plant cell. Anthocyanin synthesis (ANS) protein is an important synthetase participated in anthocyanin biosynthetic pathway. In this study, we isolated the PsANS gene from transcriptome database built by our previous study. The PsANS gene contain an 1050bp open reading frame encoding 349 amino acid, phylogenetic analysis revealed that PsANS was segrated into a group with ANS from others plant species. Secondary and thri-dimension structure prediction also revealed that it may have similar function with ANS in others plant species. The identified PsANS gene would be helpful for further research in flower color modification and resistance breeding.

2010 ◽  
Vol 74 (9) ◽  
pp. 1760-1769 ◽  
Author(s):  
Yoshikazu TANAKA ◽  
Filippa BRUGLIERA ◽  
Gianna KALC ◽  
Mick SENIOR ◽  
Barry DYSON ◽  
...  

2006 ◽  
Vol 23 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Yukiko Ueyama ◽  
Yukihisa Katsumoto ◽  
Yuko Fukui ◽  
Masako Fukuchi-Mizutani ◽  
Hideo Ohkawa ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu Qiao ◽  
Qiming Cheng ◽  
Yutong Zhang ◽  
Wei Yan ◽  
Fengyan Yi ◽  
...  

Abstract Background Sainfoin (Onobrychis viciifolia Scop) is not only a high-quality legume forage, but also a nectar-producing plant. Therefore, the flower color of sainfoin is an important agronomic trait, but the factors affecting its flower phenotype are still unclear. To gain insights into the regulatory networks associated with metabolic pathways of coloration compounds (flavonoids or anthocyanins) and identify the key genes, we conducted a comprehensive analysis of the phenotype, metabolome and transcriptome of WF and AF of sainfoin. Results Delphinidin, petunidin and malvidin derivatives were the main anthocyanin compounds in the AF of sainfoin. These substances were not detected in the WF of sainfoin. The transcriptomes of WF and AF in sainfoin at the S1 and S3 stages were obtained using the Illumina HiSeq4000 platform. Overall, 10,166 (4273 upregulated and 5893 downregulated) and 15,334 (8174 upregulated and 7160 downregulated) DEGs were identified in flowers at S1 and S3 stages, respectively (WF-VS-AF). KEGG pathway annotations showed that 6396 unigenes were annotated to 120 pathways and contained 866 DEGs at S1 stages, and 6396 unigenes were annotated to 131 pathways and included 1546 DEGs at the S3 stage. Nine DEGs belonging to the “flavonoid biosynthesis”and “phenylpropanoid biosynthesis” pathways involved in flower color formation were identified and verified by RT-qPCR analyses. Among these DEGs, 4CL3, FLS, ANS, CHS, DFR and CHI2 exhibited downregulated expression, and F3H exhibited upregulated expression in the WF compared to the AF, resulting in a decrease in anthocyanin synthesis and the formation of WF in sainfoin. Conclusions This study is the first to use transcriptome technology to study the mechanism of white flower formation in sainfoin. Our transcriptome data will be a great enrichment of the genetic information for sainfoin. In addition, the data presented herein will provide valuable molecular information for genetic breeding and provide insight into the future study of flower color polymorphisms in sainfoin.


2015 ◽  
Vol 10 (3) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Megumi Ono ◽  
Tsukasa Iwashina

The flavonoids in the flowers of Edgeworthia chrysantha, Pittosporum tobira and Wisteria floribunda were isolated and identified. Quercetin and kaempferol 3- O-glucosides and 3- O-rutinosides were found in E. chrysantha, and quercetin 3- O-rutinoside, 3- O-glucoside and 3- O-pentosylrhamnosylglucoside, kaempferol 3- O-robinobioside, 3- O-rutinoside, 3- O-glucoside and 3- O-pentosylrhamnosylglucoside, and isorhamnetin 3- O-rutinoside were isolated from P. tobira. Ten flavonoids, quercetin 3- O-sophoroside, 3- O-rutinoside, 3- O-glucoside, kaempferol 3- O-sophoroside and 3- O-glucoside, luteolin 5- O-glucoside, 7- O-glucoside and 7- O-hexoside, and apigenin 7- O-glucoside and 4′- O-hexoside were isolated from W. floribunda. The major pigments of E. chrysantha were carotenoids. Their content decreased with the change in flower color to white from yellow via cream, and total flavonoid content also slightly decreased by ca. 0.8 in cream and ca. 0.9 fold in white flowers. In contrast with E. chrysantha, white flowers of P. tobira turn to cream and then yellow in which the major pigments are also carotenoids. In this species, both carotenoid and flavonoid contents are gradually increased from white to yellow flowers. Though the petal color of Wisteria floribunda is mauve, due to anthocyanin pigments, the yellow areas are due to carotenoids; these turn to white in the late flowering stage. However, their flavonoid contents were essentially the same among the yellow, cream and white spots of flags. Thus, it was shown by HPLC analysis of the flower flavonoids of E. chrysantha, P. tobira and W. floribunda, although the visible pigments such as carotenoids and anthocyanins are quantitatively varied, the quantitative variation in UV-absorbing substances, such as flavones and flavonols, differs with plant species.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 743
Author(s):  
Jie Wang ◽  
Lin-Bao Zhu ◽  
Yan Ma ◽  
Ying-Xue Liu ◽  
Hui-Hua Cao ◽  
...  

β-1,3-glucan recognition proteins (βGRPs) as pattern recognition receptors (PRRs) play an important role in recognizing various pathogens and trigger complicated signaling pathways in insects. In this study, we identified a Bombyx mori β-1,3-glucan recognition protein gene named BmβGRP4, which showed differential expression, from a previous transcriptome database. The full-length cDNA sequence was 1244 bp, containing an open reading frame (ORF) of 1128 bp encoding 375 amino acids. BmβGRP4 was strongly expressed in the larval stages and highly expressed in the midgut of B. mori larvae in particular. After BmNPV infection, the expression of BmβGRP4 was reduced significantly in the midgut. Furthermore, a significant increase in the copy number of BmNPV was observed after the knockdown of BmβGRP4 in 5th instar larvae, while the overexpression of BmβGRP4 suppressed the proliferation of BmNPV in BmN cells. Subsequently, the expression analysis of several apoptosis-related genes and observation of the apoptosis morphology demonstrated that overexpression of BmβGRP4 facilitated apoptosis induced by BmNPV in BmN cells. Moreover, BmβGRP4 positively regulated the phosphatase and tensin homolog gene (BmPTEN), while expression of the inhibitor of apoptosis gene (BmIAP) was negatively regulated by BmβGRP4. Hence, we hypothesize that BmNPV infection might suppress BmPTEN and facilitate BmIAP to inhibit cell apoptosis by downregulating the expression of BmβGRP4 to escape host antiviral defense. Taken together, these results show that BmβGRP4 may play a role in B. mori response to BmNPV infection and lay a foundation for studying its functions.


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1024
Author(s):  
Yan Hong ◽  
Mengling Li ◽  
Silan Dai

The generation of chrysanthemum (Chrysanthemum × morifolium) flower color is mainly attributed to the accumulation of anthocyanins. Light is one of the key environmental factors that affect the anthocyanin biosynthesis, but the deep molecular mechanism remains elusive. In our previous study, a series of light-induced structural and regulatory genes involved in the anthocyanin biosynthetic pathway in the chrysanthemum were identified using RNA sequencing. In the present study, differentially expressed proteins that are in response to light with the capitulum development of the chrysanthemum ‘Purple Reagan’ were further identified using isobaric tags for relative and absolute quantification (iTRAQ) technique, and correlation between the proteomic and the transcriptomic libraries was analyzed. In general, 5106 raw proteins were assembled based on six proteomic libraries (three capitulum developmental stages × two light treatments). As many as 160 proteins were differentially expressed between the light and the dark libraries with 45 upregulated and 115 downregulated proteins in response to shading. Comparative analysis between the pathway enrichment and the gene expression patterns indicated that most of the proteins involved in the anthocyanin biosynthetic pathway were downregulated after shading, which was consistent with the expression patterns of corresponding encoding genes; while five light-harvesting chlorophyll a/b-binding proteins were initially downregulated after shading, and their expressions were enhanced with the capitulum development thereafter. As revealed by correlation analysis between the proteomic and the transcriptomic libraries, GDSL esterase APG might also play an important role in light signal transduction. Finally, a putative mechanism of light-induced anthocyanin biosynthesis in the chrysanthemum was proposed. This study will help us to clearly identify light-induced proteins associated with flower color in the chrysanthemum and to enrich the complex mechanism of anthocyanin biosynthesis for use in cultivar breeding.


2004 ◽  
Vol 382 (2) ◽  
pp. 519-526 ◽  
Author(s):  
Margareta FORSGREN ◽  
Anneli ATTERSAND ◽  
Staffan LAKE ◽  
Jacob GRÜNLER ◽  
Ewa SWIEZEWSKA ◽  
...  

The COQ2 gene in Saccharomyces cerevisiae encodes a Coq2 (p-hydroxybenzoate:polyprenyl transferase), which is required in the biosynthetic pathway of CoQ (ubiquinone). This enzyme catalyses the prenylation of p-hydroxybenzoate with an all-trans polyprenyl group. We have isolated cDNA which we believe encodes the human homologue of COQ2 from a human muscle and liver cDNA library. The clone contained an open reading frame of length 1263 bp, which encodes a polypeptide that has sequence homology with the Coq2 homologues in yeast, bacteria and mammals. The human COQ2 gene, when expressed in yeast Coq2 null mutant cells, rescued the growth of this yeast strain in the absence of a non-fermentable carbon source and restored CoQ biosynthesis. However, the rate of CoQ biosynthesis in the rescued cells was lower when compared with that in cells rescued with the yeast COQ2 gene. CoQ formed when cells were incubated with labelled decaprenyl pyrophosphate and nonaprenyl pyrophosphate, showing that the human enzyme is active and that it participates in the biosynthesis of CoQ.


2019 ◽  
Vol 201 (14) ◽  
Author(s):  
Kuan Hu ◽  
Ashley T. Jordan ◽  
Susan Zhang ◽  
Avantika Dhabaria ◽  
Amanda Kovach ◽  
...  

ABSTRACT We characterized an operon in Mycobacterium tuberculosis, Rv3679-Rv3680, in which each open reading frame is annotated to encode “anion transporter ATPase” homologues. Using structure prediction modeling, we found that Rv3679 and Rv3680 more closely resemble the guided entry of tail-anchored proteins 3 (Get3) chaperone in eukaryotes. Get3 delivers proteins into the membranes of the endoplasmic reticulum and is essential for the normal growth and physiology of some eukaryotes. We sought to characterize the structures of Rv3679 and Rv3680 and test if they have a role in M. tuberculosis pathogenesis. We solved crystal structures of the nucleotide-bound Rv3679-Rv3680 complex at 2.5 to 3.2 Å and show that while it has some similarities to Get3 and ArsA, there are notable differences, including that these proteins are unlikely to be involved in anion transport. Deletion of both genes did not reveal any conspicuous growth defects in vitro or in mice. Collectively, we identified a new class of proteins in bacteria with similarity to Get3 complexes, the functions of which remain to be determined. IMPORTANCE Numerous bacterial species encode proteins predicted to have similarity with Get3- and ArsA-type anion transporters. Our studies provide evidence that these proteins, which we named BagA and BagB, are unlikely to be involved in anion transport. In addition, BagA and BagB are conserved in all mycobacterial species, including the causative agent of leprosy, which has a highly decayed genome. This conservation suggests that BagAB constitutes a part of the core mycobacterial genome and is needed for some yet-to-be-determined part of the life cycle of these organisms.


2015 ◽  
Vol 25 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Dai-Joong Kim ◽  
Gui-Hye Hwang ◽  
Ji-Na Um ◽  
Jae-Yong Cho

Overexpression of the NCgl0462 open reading frame, encoding a class II aminotransferase, was studied in conjunction with other enzymes in <smlcap>L</smlcap>-ornithine biosynthesis in an <smlcap>L</smlcap>-ornithine-producing strain. Expression of the wild-type NCgl0462 open reading frame, which displayed aminotransferase activity, was amplified by placing it under the control of the glyceraldehyde 3-phosphate dehydrogenase gene promoter in the pEK0 plasmid and in the genome. <smlcap>L</smlcap>-Ornithine production in <i>Corynebacterium</i><i>glutamicum</i> SJC8260 harboring plasmid and the genomic NCgl0462 open reading frame was increased by 8.8 and 21.6%, respectively. In addition, the combined overexpression of the NCgl0462 open reading frame within the genome along with the mutated <smlcap>L</smlcap>-ornithine biosynthesis genes <i>(argCJBD)</i> placed in the pEK0 plasmid in <i>C</i>. <i>glutamicum</i> SJC8260 resulted in significant improvement in <smlcap>L</smlcap>-ornithine production (12.48 g/l for combined overexpression compared with 8.42 g/l for the control). These results suggest that overexpression of the aminotransferase-encoding NCgl0462 open reading frame plays an unequivocal role in the <smlcap>L</smlcap>-ornithine biosynthetic pathway, with overlapping substrate specificity in <i>C</i>. <i>glutamicum</i>.


Sign in / Sign up

Export Citation Format

Share Document