A Low Cost MCU Based Single Phase Sinusoidal Pulse-Width-Modulated Inverter

2014 ◽  
Vol 1014 ◽  
pp. 241-244
Author(s):  
Peng Lai Chen ◽  
Chun Yu Lin ◽  
Yu Lin Juan ◽  
Te Chau Chen ◽  
Chin Sung Lin

Sinusoidal pulse width modulation (SPWM) technique has been widely used in inverters and motor driver ciruits. In this paper, SPWM was generated by a low cost HT66F50 single-chip, wherein the reduced sampling points of a sine wave, and the fewer sampling points were then used to produce SPWM singals. The full-bridge inverter was modulated by the high switching frequency SPWM for the high side switches and the 60Hz control signals for the low side switches. Thus, it not only reduces the required memory spacein MCU, but also reduces the switching power losses. When the SPWM frequency is 19.53 kHz or 11.72 kHz, the total harmonic distortion (THD) of the inverter’s output is less than 0.6% under the load resistance 50, which is in compliance with the specification of IEEE STD. 519-1992.

Author(s):  
Adireddy Ramesh, ◽  
O. Chandra Sekhar ◽  
M. Siva Kumar

<p>Penetration of multilevel inverters (MLI) in to high power and medium voltage application has been increasing because of its advantages. The conventional two levels inverter has high harmonic distortion which gives poor power quality. Lot of topologies has been developed to overcome the drawbacks of a two level inverter. These topologies include more number of switching devices which increases the design complexity and cost. The optimum design of inverter requires less number of switches with better quality in waveform. In this paper, a symmetrical five level and seven levels inverter configuration with simplified pulse width modulation technique is proposed. This proposed inverter requires less switches, less protection circuits along with low cost and size. The analysis of the inverter circuits is done by using Matlab/Simulink software. The synthesized staircase wave form is shown and total harmonic distortion (THD) is also measured.</p>


Multilevel inverters are widely used for high power and high voltage applications. The performance of multilevel inverters are superior to conventional two level inverters in terms of reduced total harmonic distortion, higher dc link voltages, lower electromagnetic interference and increased quality in the output voltage waveform. This paper presents a single phase hybrid eleven level multilevel inverter topology with reduced switch count to compensate the above mentioned disadvantages. This paper also presents various high switching frequency based multi carrier pulse width modulation strategies such as Phase Disposition PWM Strategy (PDPWM), Phase Opposition and Disposition PWM Strategy (PODPWM), Alternate Phase opposition Disposition PWM (APODPWM), Carrier Overlapping PWM (COPWM), Variable frequency carrier PWM (VFPWM), Third Harmonic Injection PWM (TFIPWM) applied to the proposed eleven level multilevel inverter and is analyzed for RL load. FFT analysis is carried out and total harmonic distortion, fundamental output voltage are calculated. Simulation is carried out in MATLAB/SMULINK.


Author(s):  
Pervala Arundhathi

A microcontroller primarily based totally method of producing a sine wave from the sun panel output is designed and carried out on this paper the usage of a two-degree topology for a sun string inverter. This paper offers the improvement of a most energy factor tracking (MPPT) and manipulate circuit for a unmarried section inverter the usage of a pulse width modulation (PWM) IC. The elegance of this configuration is the removal of a complicated circuitry to generate oscillation pulses for transistor switches. The controller IC TL494 is capable of generate the vital waveforms to manipulate the frequency of inverter via right use of switching pulse. The DC to AC inversion is correctly completed along the switching signals; the circuit produced inverter output of frequency almost 50 Hz. The major goal of the proposed method is to layout a low cost, low harmonics voltage supply inverter basically targeted upon low energy digital home equipment the usage of variable sun energy as inputs.


2020 ◽  
Vol 10 (21) ◽  
pp. 7719
Author(s):  
Yang Wang ◽  
Ahmet Aksoz ◽  
Thomas Geury ◽  
Salih Baris Ozturk ◽  
Omer Cihan Kivanc ◽  
...  

A modular multilevel converter (MMC) is an advanced voltage source converter applicable to a wide range of medium and high-voltage applications. It has competitive advantages such as quality output performance, high modularity, simple scalability, and low voltage and current rating demand for the power switches. Remarkable studies have been carried out regarding its topology, control, and operation. The main purpose of this review is to present the current state of the art of the MMC technology and to offer a better understanding of its operation and control for stationary applications. In this study, the MMC configuration is presented regarding its conventional and advanced submodule (SM) and overall topologies. The mathematical modeling, output voltage, and current control under different grid conditions, submodule balancing control, circulating current control, and modulation methods are discussed to provide the state of the MMC technology. The challenges linked to the MMC are associated with submodule balancing control, circulating current control, control complexity, and transient performance. Advanced nonlinear and predictable control strategies are expected to improve the MMC control and performance in comparison with conventional control methods. Finally, the power losses associated with the advanced wide bandgap (WBG) power devices (such as SiC, GaN) are explored by using different modulation schemes and switching frequencies. The results indicate that although the phase-shifted carrier-based pulse width modulation (PSC-PWM) has higher power losses, it outputs a better quality voltage with lower total harmonic distortion (THD) in comparison with phase-disposition pulse width modulation (PD-PWM) and sampled average modulation pulse width modulation (SAM-PWM). In addition, WBG switches such as silicon carbide (SiC) and gallium nitride (GaN) devices have lower power losses and higher efficiency, especially at high switching frequency in the MMC applications.


2019 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Rutian Wang ◽  
Fuxu Wang ◽  
Haining Pan ◽  
Sutong Liu

A high-frequency link (HFL) three-phase four-leg matrix converter (MC) can output three-phase balanced voltage for unbalanced load conditions. It is an inverter with great development potential. This paper presents a hybrid pulse width modulation (HPWM) strategy for a four-wire matrix converter based on the fourth bridge leg compensation method. Firstly, the rear-stage topology of a high-frequency link three-phase four-leg matrix converter is decoupled into two sets of ordinary three-phase four-wire inverters. Then the compensation strategy is applied to separate the fourth bridge leg from the coupling of the ordinary inverter and realize its independent control. Under the theory of compensation, the fourth bridge leg plays a role in compensating the deviation of the neutral point potential when the load is unbalanced, the fourth bridge leg does not need to work when the load is balanced. Finally, the fourth bridge leg modulation wave obtained by the compensation method is combined with the front three bridge leg modulation waves to perform the coupling control using the hybrid pulse width modulation strategy. It has changed the problem that the previous hybrid pulse width modulation strategy cannot be directly applied to the four-wire matrix converter. This strategy is simple to control, without adding any auxiliary commutation detection circuitry, can effectively solve the inherent commutation problem in the bidirectional switch tube of the four-wire matrix converter. It simplifies the complexity of the system, reduced control cost, and high switching loss caused by high switching frequency. The fast adjustment function of compensation strategy makes the dynamic response performance of system under load fluctuation state more prominent, the harmonic distortion rate is smaller. The perfect combination of two strategies allows the high-frequency link three-phase four-leg matrix converter with any form of load to give full play to its structural advantages. The related work verifies the feasibility and effectiveness of the modulation method and control logic.


Author(s):  
Zainal Salam ◽  
Khosru Mohammad Salim

Artikel ini menerangkan penggunaan pengawal mikro serbaguna untuk menjana denyut–denyut modulasi lebar jalur untuk penyongsang tiga fasa. Kelebihan utama teknik ini adalah keringkasan perkakasan – hanya sebuah pengawal mikro dengan peralatan dalaman sahaja diperlukan. Hasilnya adalah sebuah sistem yang ringkas, murah dan dapat dipercayai. Setelah prototaip penyongsang menggunakan pengawal mikro Siemens 80C167 telah dibangunkan dan beberapa hasil ujian diberikan. Kata kunci: Pengawal mikro; penyongsong; denyut modulasi lebar jalur; elektronik kuasa. This paper describes the use of a general purpose microcontroller to generate the pulse width modulation (PWM) pulses for a three–phase inverter. The main feature of the work is the simplicity of the hardware – only a fixed point microcontroller with its associated internal peripheral is required. This result in an extremely simple, low-cost and reliable system. A laboratory inverter prototype using a Siemens 80C167 microcontroller is developed and typical results are presented. Key word: Microcontroller; inverter; pulse width modulation; power electronics, renewable energy.


Author(s):  
V. Mohan ◽  
N. Stalin ◽  
S. Jeevananthan

The pulse width modulated voltage source inverters (PWM-VSI) dominate in the modern industrial environment. The conventional PWM methods are designed to have higher fundamental voltage, easy filtering and reduced total harmonic distortion (THD). There are number of clustered harmonics around the multiples of switching frequency in the output of conventional sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) inverters. This is due to their fixed switching frequency while the variable switching frequency makes the filtering very complex. Random carrier PWM (RCPWM) methods are the host of PWM methods, which use randomized carrier frequency and result in a harmonic profile with well distributed harmonic power (no harmonic possesses significant magnitude and hence no filtering is required). This paper proposes a chaos-based PWM (CPWM) strategy, which utilizes a chaotically changing switching frequency to spread the harmonics continuously to a wideband and to reduce the peak harmonics to a great extent. This can be an effective way to suppress the current harmonics and torque ripple in induction motor drives. The proposed CPWM scheme is simulated using MATLAB / SIMULINK software and implemented in three phase voltage source inverter (VSI) using field programmable gate array (FPGA).


Author(s):  
Hussain Attia ◽  
Hang Seng Che ◽  
Tan Kheng Suan Freddy ◽  
Ahmad Elkhateb

The dead-time is necessary to be inserted between the gates drive pulses of the two power electronic switches in a one leg of any inverter to avoid a short circuit in the leg and the DC supply as well. However, adding the dead-time increases the low order harmonics of the output voltage/current waveform of the inverter. This paper investigates the positive effects of decreasing the pulse width modulation (PWM) drive pulses number per fundamental period on the current low order harmonics. In addition, this paper evaluates the impact of the confined band variable switching frequency pulse width modulation (CB-VSFPWM) technique on inverter performance in terms of dead-time mitigating, and consequenctely lowering the low order harmonics. CB-VSFPWM technique reduces the total harmonic distortion (THD) levels in the inverter output current as well. Theoretical analysis of the CB-VSFPWM effectiveness in reducing the negative effect of the dead-time has explained in this study and confirmed by the MATLAB/Simulink simulation results.


Author(s):  
M. H. Yatim ◽  
A. Ponniran ◽  
A. N. Kasiran

<span>This paper presents a proposed modified pulse width modulation – low frequency triangular (MPWM-LFT) switching strategy for minimization of voltage THD with implementation of asymmetric multilevel inverter (AMLI) topology on the reduced number of switching devices (RNSD) circuit structure. Principally, MPWM-LFT able to produce optimum angle of the output voltage level in order to minimize total harmonic distortion (THD). In this study, 5-level reduced number of switching devices circuit structure is selected as a circuit configuration for asymmetric (7-level structure) multilevel inverter. For switching strategy, MPWM used low switching frequency in producing signal and needs higher output voltage levels to achieve low total harmonic distortion. In contrast, sinusoidal pulse width modulation used high switching frequency in order to minimize total harmonic distortion. By optimizing angle at the output voltage using MPWM-LFT switching strategy, the voltage THD is lower as compared to MPWM and SPWM switching strategies. MPWM-LFT switching strategy obtains 11.6% of voltage THD for the 7-level asymmetric topology as compared to MPWM and SPWM switching strategies with the voltage THD are 21.5% and 17.5% respectively from the experimental works.</span>


Sign in / Sign up

Export Citation Format

Share Document