Effect of Jet Hole Size on Drag Reduction Performance of Bionic Jet Surface

2014 ◽  
Vol 1022 ◽  
pp. 87-90
Author(s):  
Zhao Gang ◽  
Fang Li ◽  
Wei Xin Liu ◽  
Shu Zhang ◽  
Hong Shi Bi ◽  
...  

According to the problem of drag reduction on bionic jet surface, a rectangular jet surface model which is similar to shark branchial shape was built, and numerical simulation was processed by using SST k-ω turbulence model, moreover, influence of jet hole size on the drag reduction performance of jet surface was studied. The results show that: the effect of flow length of rectangular jet hole on the drag reduction is remarkable, with the increase of flow length, fluid friction resistance of the jet surface decreases, the maximum drag reduction rate was 14.38%, and the results of numerical simulation was verified by carrying out experiments. The jet fluid decreases the sweep on the wall of mainstream high speed fluid, which increases the thickness of jet surface boundary layer, thereby reducing the surface friction of the jet hole downstream.

Author(s):  
Yasmin Khakpour ◽  
Miad Yazdani

In this work, numerical simulation is used to study the stability enhancement of high speed supercavitating hydrofoils. Although supercavitation is known as one of the most effective methods for drag reduction, producing the cavity, either by ventilation or by cavitator at front of the body, may cause some instabilities on cavity surface and thus on the projectile’s motion. Therefore removing these instabilities comes as an important point of discussion. First of all, we calculate the sources of instabilities and measure respective forces and then present some approaches that significantly reduce these instabilities. One of these methods that could produce more stable supercavities is injecting of the air into the cavity unsteadily which varies through the projectile’s surface. This approach is provided by arrays of slots distributed on the projectile’s surface and unsteady injection is modeled over the surface. Furthermore, the position of ventilation, dramatically affects the stability like those in aerodynamics. In all approaches it is assumed that the supercavity covers the whole of the body, however the forces caused by the wakes, formed behind the body are taken into account. The calculation is performed at three cavitation numbers with respective velocities of 40 m/s, 50 m/s, 60 m/s.


2020 ◽  
Vol 11 ◽  
pp. 24-40 ◽  
Author(s):  
Weili Liu ◽  
Hongjian Ni ◽  
Peng Wang ◽  
Yi Zhou

A novel surface morphology for pipelines using transverse microgrooves was proposed in order to reduce the pressure loss of fluid transport. Numerical simulation and experimental research efforts were undertaken to evaluate the drag reduction performance of these bionic pipelines. It was found that the vortex ‘cushioning’ and ‘driving’ effects produced by the vortexes in the microgrooves were the main reason for obtaining a drag reduction effect. The shear stress of the microgrooved surface was reduced significantly owing to the decline of the velocity gradient. Altogether, bionic pipelines achieved drag reduction effects both in a pipeline and in a concentric annulus flow model. The primary and secondary order of effect on the drag reduction and optimal microgroove geometric parameters were obtained by an orthogonal analysis method. The comparative experiments were conducted in a water tunnel, and a maximum drag reduction rate of 3.21% could be achieved. The numerical simulation and experimental results were cross-checked and found to be consistent with each other, allowing to verify that the utilization of bionic theory to reduce the pressure loss of fluid transport is feasible. These results can provide theoretical guidance to save energy in pipeline transportations.


2014 ◽  
Vol 1055 ◽  
pp. 152-156 ◽  
Author(s):  
Gang Zhao ◽  
Fang Li ◽  
Wei Xin Liu ◽  
Jian Ying Zhao ◽  
Hong Shi Bi

According to the problem of large friction resistance exists between the sealing ring and the cylinder block when the piston cylinder works, the drag reduction technology of bionic concave surface was applied in the sealing ring. By building a drag reduction motion model of sealing ring with concave surface of triangular arrangement, the effect of drag reduction performance decided by concave diameter and piston velocity was studied with the method of numerical simulation. The results show that: when the piston velocity is fixed, the maximum drag reduction rate can be achieved with the concave diameter is 1.5mm, and the maximum drag reduction rate is 15.72%. Meanwhile when the diameter of the concave is fixed, the drag reduction rate increased gradually with the increase of initial speed, the drag reducing effect is best at the speed of 0.6m/s. In the process of piston movement, lubricating oil in concave shakes, and makes the lubricating oil flow to the inside wall of cylinder, which play the role of lubrication, so as to achieve the effect of reducing friction and increasing the movement speed of piston.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Taichi Igarashi ◽  
Hiroshi Naito ◽  
Koji Fukagata

Flow around a circular cylinder controlled using plasma actuators is investigated by means of direct numerical simulation (DNS). The Reynolds number based on the freestream velocity and the cylinder diameter is set atReD=1000. The plasma actuators are placed at±90° from the front stagnation point. Two types of forcing, that is, two-dimensional forcing and three-dimensional forcing, are examined and the effects of the forcing amplitude and the arrangement of plasma actuators are studied. The simulation results suggest that the two-dimensional forcing is primarily effective in drag reduction. When the forcing amplitude is higher, the mean drag and the lift fluctuations are suppressed more significantly. In contrast, the three-dimensional forcing is found to be quite effective in reduction of the lift fluctuations too. This is mainly due to a desynchronization of vortex shedding. Although the drag reduction rate of the three-dimensional forcing is slightly lower than that of the two-dimensional forcing, considering the power required for the forcing, the three-dimensional forcing is about twice more efficient.


2013 ◽  
Vol 461 ◽  
pp. 725-730 ◽  
Author(s):  
Yun Qing Gu ◽  
Jing Ru ◽  
Zhao Gang ◽  
Zhao Yuan Li ◽  
Wen Bo Liu ◽  
...  

According to the jet hole configuration mode of bionic jet surface and its influence on the drag reduction, as the basic form of jet hole configuration is the isosceles triangle elements, so this was used to establish the computational model of jet hole configuration. In this case, the height and base of the triangles were considered as variable. The SST k-ω turbulence model was used to simulate and research the drag reduction characteristics of bionic jet surface in different configuration modes of jet holes at the main flow field velocity value of 20m/s and the jet velocity value of 0.4~2.0m/s. Also the influence of different configurations of height and base on drag reduction characteristics of bionic jet surface was studied, which got the optimum size of jet hole configuration. Results show that in triangle configuration elements, the drag reduction characteristics of bionic jet surface can be influenced by the jet hole of different configurations of height and base; the drag reduction of bionic jet surface reaches the peak of 32.74% at 8mm height, 11mm base, and the jet velocity value of 2.0m/s. At the same flow field velocity, the drag reduction rate results achieved by experimental tests and by numerical simulation were changing consistently and were found same, which verifies correctness of numerical simulation results.


Author(s):  
Yasmin Khakpour ◽  
Miad Yazdani

In this work, numerical simulation is used to study the stability enhancement of high speed supercavitating Shkval missile. Although supercavitation is known as one of the most effective methods for drag reduction, producing the cavity, either by ventilation or by cavitator at front of the body, may cause some instabilities on cavity surface and thus on the projectile’s motion. Therefore removing these instabilities comes as an important point of discussion. First of all, we calculate the sources of instabilities and measure respective forces and then present some approaches that significantly reduce these instabilities. One of these methods that could produce more stable supercavities is injecting of the air into the cavity unsteadily which varies through the projectile’s surface. This approach is provided by arrays of slots distributed on the projectile’s surface and unsteady injection is modeled over the surface. Furthermore, the position of ventilation, dramatically affects the stability like those in aerodynamics. In all approaches it is assumed that the supercavity covers the whole of the body, however the forces caused by the wakes, formed behind the body are taken into account. The calculation is performed at three cavitation numbers with respective velocities of 100 m/s, 150 m/s, 200 m/s.


2021 ◽  
Vol 9 (2) ◽  
pp. 140
Author(s):  
Hansheng Li ◽  
Fenglei Han ◽  
Haitao Zhu ◽  
Jiawei Zhang ◽  
Weipeng Zhang ◽  
...  

Diver propulsion vehicles (hereinafter referred to as DPV) are a kind of small vehicle with underwater high-speed used by divers, who are able to grasp or ride on, and operate the volume switch to change the speed. Different from unmanned underwater vehicles (UUVs), the interference caused by diver’s posture changing is a unique problem. In this paper, a Diver–DPV multi-body coupling hydrodynamic model considering rigid body dynamics and fluid disturbance is established by analyzing the existing DPV related equipment. The numerical simulation of multi-body articulated motion is realized by using Star-CCM+ overlapping grid and DFBI 6-DOF body motion method. Five cases of DPVs underwater cruising in a straight-line when restraining diver movement is simulated, and five cases with free diver movement are simulated too. Finally, the influence of the diver’s posture changing on the cruising speed resistance is analyzed, and the motion equation including the disturbance is solved. The final conclusion is that, the disturbance is favorable at high speed, which can reduce the cruising resistance, and unfavorable at low speed, which increases the cruising resistance. The friction resistance Ff always accounts for the main part in all speed cases.


2019 ◽  
Author(s):  
Weili Liu ◽  
Hongjian Ni ◽  
Peng Wang ◽  
Yi Zhou

Novel surface morphology of pipeline with transverse microgrooves was proposed for reducing the pressure loss of fluid transport. Numerical simulation and experimental research efforts were undertaken to evaluate the drag reduction performance of bionic pipeline. The computational fluid dynamic calculation, using SST κ-ω turbulent model, shown that the “vortex cushioning effect” and “driving effect” produced by the vortexes in the microgrooves were the main reason for the drag reduction. The shear stress of the microgrooved surface was reduced significantly owing to the decline of the velocity gradient; then bionic pipeline achieved drag reduction effect in the pipe and concentric annulus flow. The primary and secondary order of effect on the drag reduction and optimal microgroove geometric parameters were obtained by orthogonal analysis method. The comparative experiments were conducted in a water tunnel, and a maximum drag reduction rate of 3.21% was achieved. The numerical simulation and experimental results were cross-checked and consistent with each other to verify that the utilization of bionic theory to reduce the pressure loss of fluid transport is feasible. Results can provide theoretical guidance for the energy saving of pipeline transportation.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1357
Author(s):  
Liyan Wu ◽  
Jiaqi Wang ◽  
Guihang Luo ◽  
Siqi Wang ◽  
Jianwei Qu ◽  
...  

The drag reduction design of underwater vehicles is of great significance to saving energy and enhancing speed. In this paper, the drag reduction characteristics of Paramisgurnus dabryanus loach was explored using 3D ultra-depth field microscopy to observe the arrangement of the scales. Then, a geometric model was established and parameterized. A simulated sample was processed by computer numerical control (CNC) machining and tested through using a flow channel bench. The pressure drop data were collected by sensors, and the drag reduction rate was consequently calculated. The test results showed that the drag reduction rate of a single sample could reach 23% at a speed of 1.683 m/s. Finally, the experimental results were verified by numerical simulation and the drag reduction mechanism was explored. The boundary layer theory and RNG k-ε turbulence model were adopted to analyze the velocity contour, pressure contour and shear force contour diagrams. The numerical simulation results showed that a drag reduction effect could be achieved by simulating the microstructure of scales of the Paramisgurnus dabryanus loach, showing that the results are consistent with the flow channel experiment and can reveal the drag reduction mechanism. The bionic surface can increase the thickness of boundary layer, reduce the Reynolds number and wall resistance. The scales disposition of Paramisgurnus dabryanus loach can effectively reduce the surface friction, providing a reference for future research on drag reduction of underwater vehicles such as ships and submarines.


2014 ◽  
Vol 654 ◽  
pp. 57-60 ◽  
Author(s):  
Zhao Gang ◽  
Fang Li ◽  
Wei Xin Liu ◽  
Ming Ming Liu ◽  
Hong Shi Bi

According to the problem of bionic shark gill jet can reduce friction on shark surface, a model of bionic jet surface was established based on shark surface was analyzed by measurements, and its numerical simulation was processed by using RNG k-ε turbulence model. The results show that: the gill jet can reduce frictional resistance on shark surface, and the best drag reduction can be got when the speed of main field is 5m/s, furthermore the maximum drag reduction rate can be up to 17.15%. The pressure of jet hole upstream is reduced which due to the barrier to the facing fluid by the jet, so that the pressure resistance of jet surface is reduced as well. Besides, jet fluid is blocked in the boundary layer by mainstream fluid, which caused the fluid velocity of jet hole downstream is reduced, the thickness of boundary layer is increased, and the normal velocity gradient of wall is reduced, so as to achieve the effect of drag reduction.


Sign in / Sign up

Export Citation Format

Share Document