A Fundamental Study on the Processing of Heavy Metals Contained in Underground Water by Composite Modulation Electromagnetic Field Processing

2014 ◽  
Vol 1025-1026 ◽  
pp. 661-667
Author(s):  
Sang An Ha ◽  
Dong Kyun Kim ◽  
Dong Won Lee ◽  
Byong Ho Jung ◽  
Jong Moon Lee ◽  
...  

The present study is aimed at deriving study factors appropriate for removal of heavy metals in a region with combined contamination of non-biodegradable organics or heavy metal ions in soil or underground water contamination or a region with underground water contamination using a composite alternating current electromagnetic field with combined modulation of an electric and a magnetic field. In addition, it is directed at deriving fundamental experiment, design factors that can be utilized in removing organic contaminants or metal-organic complexes having polarity of an electric charge. The continuous-type apparatus for fusion process in a composite alternating current electric field employed in the present study was designed to process a maximum of 260 L. Each configuration is provided with electrolytic decomposition apparatus, Magnetic Equipment, Power supply and Electrode plates with an adjustable distance between electrodes. By measuring oxidation and reduction processes of ions appearing in chemical reaction processes, electric potentials produced by injection of a negative reactivity electrode into an aqueous solution in a reversible redox equilibrium condition were measured.

2013 ◽  
Vol 813 ◽  
pp. 514-518
Author(s):  
Sang An Ha ◽  
Byong Ho Jung ◽  
Jong Moon Lee ◽  
Kwon Hoo Kim ◽  
Jei Pil Wang

The objective of this study was to increase flux and decomposition speed through the development of a multi-type electrical field decomposition facility that employs a more complex modulated electromagnetic field than that used in existing decomposition facilities where recalcitrant organics or heavy metals are combined together. Further, in this study, optimized foundational data was derived from the results obtained following field work. As a result, when an electrical field was applied to an electrolyzer, decomposition of the electrolyzer was carried out quickly, thereby showing higher efficiency because an electrical field was permeated to the contaminant faster compared to the case where an electrolyzer was not added. Keywords: Electromagnetic field, Heavy metal, Electrolyzer, Electrical field


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 463A-463
Author(s):  
Mondher Bouden ◽  
Jacques-Andre Rioux

The richness of the organic residues in certain fertilizing elements justifies their valorization in horticulture. However, their contents in pathogenic and toxic elements can restrict their use. In this context, this study was conducted in order to evaluate the effect of three organic residues on the environmental medium and the risks of water contamination by the release of heavy metals. Physocarpus opulifolius `Nanus' was transplanted into four substrates. The control substrate contained 4 peatmoss: 5 composted conifer bark: 1 fine crushed gravel (by volume). The three other substrates (25% of peatmoss was substituted by organic residue) contained 10% of fresh bio-filters (FBF), 10% of composted sewage sludges (CSS), or 10% of de-inking sludges (CDS). The pots (5l) were placed in plastic vats and the drainage water was recovered in vessels (17l). The experimental design was in complete blocks with six replications. Samples of the drainage water were collected every 2 weeks for analysis. The pots were fertilized every week (400 mg/Ll of N) and growth parameters were statistically analyzed by ANOVA. The chemical analysis of the residues proves that they contain weak concentrations in organic contaminants. There is an accumulation of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} in drainage water following the fertilization; the same applies to sulfates and potassium. On the other hand, heavy metals are not released in important concentrations and so the lead, zinc, manganese, and copper contents do not exceed the desirable limits. Moreover, the Physocarpus plants produced in CSS substrates had a growth significantly larger than those plants produced in FBF or CDS substrates. The three organic residues do not constitute a risk of pollution for the environment.


2021 ◽  
Vol 130 (3) ◽  
pp. 034301
Author(s):  
Miguel Urbaneja Torres ◽  
Kristjan Ottar Klausen ◽  
Anna Sitek ◽  
Sigurdur I. Erlingsson ◽  
Vidar Gudmundsson ◽  
...  

2013 ◽  
Vol 813 ◽  
pp. 519-524
Author(s):  
Sang An Ha ◽  
Jei Pil Wang

A purpose of the present study is to derive optimum study factors for removal of heavy metals using combined alternating current electric/magnetic field and electric membranes for the area contaminated with heavy metals in soil or underground water. ORP (Oxidation Reduction Potential) analysis was conducted to determine an intensity of tendency for oxidation or reduction of the samples contaminated with heavy metals, and electrical membrane treatment was used with adjustment of concentrations and voltages of liquid electrode (Na2SO4) to derive a high removal rate. Removal constants were analyzed to be 0.0417, 0.119, 0.1594 when the voltages were 5V, 10V, 15V, respectively, and treatment efficiency was shown to increase as the liquid electrode concentration was increased. Keywords: heavy metals, electric/magnetic field, ORP, electrical membrane


1999 ◽  
Vol 39 (6) ◽  
pp. 175-181 ◽  
Author(s):  
Abdallah Shanableh ◽  
Pushpa Ginige

The biosolids industry in Australia is evolving around the beneficial use of biosolids as a resource. Phosphorus rich biosolids from biological nutrient removal (BNR) facilities are highly desirable for land application. However, the accumulation of toxic heavy metals and industrial organic contaminants may render the biosolids unsuitable for land application. The presence of toxic heavy metals has been identified by Local Authorities in Australia as a major constraint limiting the beneficial use of biosolids. The potential of off-site contamination due to the migration of nutrients is also a major concern especially when applying biosolids to acidic agricultural land. Accordingly, the relevant environment protection and conservation agencies are involved in either developing or finalising guidelines to control the beneficial use of biosolids products. Metals bioleaching is a process achieved through bio-acidification. Bio-acidification of biosolids prior to land application can be used to dissolve and remove a significant fraction of the heavy metals content of the product. However, the process also reduces the nutrients content of the resource. Bio-acidification of Loganholme (Queensland) BNR biosolids dissolved 76% of the total phosphorus and 38% of the TKN. The heavy metals solubilisation results reached 50% for Cr, 79% for Ni, 45% for Zn, 24% for Cu, 30% for Cd, and 82% for Pb.


Sign in / Sign up

Export Citation Format

Share Document