Impact of metals bioleaching on the nutrient value of biological nutrient removal biosolids

1999 ◽  
Vol 39 (6) ◽  
pp. 175-181 ◽  
Author(s):  
Abdallah Shanableh ◽  
Pushpa Ginige

The biosolids industry in Australia is evolving around the beneficial use of biosolids as a resource. Phosphorus rich biosolids from biological nutrient removal (BNR) facilities are highly desirable for land application. However, the accumulation of toxic heavy metals and industrial organic contaminants may render the biosolids unsuitable for land application. The presence of toxic heavy metals has been identified by Local Authorities in Australia as a major constraint limiting the beneficial use of biosolids. The potential of off-site contamination due to the migration of nutrients is also a major concern especially when applying biosolids to acidic agricultural land. Accordingly, the relevant environment protection and conservation agencies are involved in either developing or finalising guidelines to control the beneficial use of biosolids products. Metals bioleaching is a process achieved through bio-acidification. Bio-acidification of biosolids prior to land application can be used to dissolve and remove a significant fraction of the heavy metals content of the product. However, the process also reduces the nutrients content of the resource. Bio-acidification of Loganholme (Queensland) BNR biosolids dissolved 76% of the total phosphorus and 38% of the TKN. The heavy metals solubilisation results reached 50% for Cr, 79% for Ni, 45% for Zn, 24% for Cu, 30% for Cd, and 82% for Pb.

2004 ◽  
Vol 1 (2) ◽  
pp. 116 ◽  
Author(s):  
Ian W. Oliver ◽  
Graham Merrington ◽  
Mike J. McLaughlin

Environmental Context. Land application of sewage-derived biosolids is both an inexpensive method to dispose of waste and a simple way to increase soil fertility and stability. However, biosolids often contain high concentrations of heavy metals, but not all of the metals are immediately available for uptake by the soil or other organisms. To determine if this toxicologic risk outweighs the benefits, the degree of ecologically available metal, rather than simply the entire metal content, must be known in both the as-disposed and worst conditions scenarios. Application of these principles requires regulatory bodies to amend their guidelines. Abstract. Application of biosolids to agricultural land provides a low-cost disposal option with many potential benefits to soil. However, the practice may result in accumulations of potentially toxic heavy metals, and thus regulations are in place to limit the amount of metals applied to soil in this way. Current Australian regulations are not ideal because they are based on total metal concentrations in soils and biosolids, rather than the fraction that is ecologically available (the fraction accessible by organisms). Therefore more environmentally appropriate regulations, based on the available metal portion, need to be devised. However, before this is possible, more needs to be known about the characteristics of Australian biosolids, including the factors that influence the availability of biosolid metals. Copper is a metal of great concern because of its commonly high concentration in biosolids and because of its relatively high toxicity to certain groups of bacteria and fungi. Therefore an investigation was conducted to characterize the range of properties observed in Australian biosolids, and to determine the fraction of available metals and the factors that influence it (particularly in the case of copper). General properties such as pH, electrical conductivity, organic carbon, and total metal concentrations were measured. Availability of copper was specifically measured using isotopic exchange techniques and a Cu2+ ion-selective electrode. Results showed that total copper concentration and Cu2+ activity could be used to predict available copper. A new system of biosolid land-use regulation that incorporates the available metal fraction and a pH protection factor is proposed.


2002 ◽  
Vol 82 (4) ◽  
pp. 433-438 ◽  
Author(s):  
M T Morera ◽  
J. Echeverría ◽  
J. Garrido

The recycling of sewage sludge to agricultural land results in the slow accumulation of potentially toxic heavy metals in soils. A greenhouse experiment was conducted to determine the bioavailability of Cu, Ni, Pb and Zn applied to soils in urban anaerobically stabilized sewage sludge. The soils were Lithic Haplumbrept (Lh), Calcixerollic Xerochrept (Cx1 and Cx2) and Paralithic Xerorthent (Px). Sunflower plants (Helianthus annuus L) were grown in the soils following amendment with the sludge. The addition of sewage sludge markedly increased the average dry weight of the plants in the soils that had lower yields without sludge addition (Lh, Cx2, and Px). The acid pH of the Lh soil favoured the bioavailability of Zn from sewage sludge. The bioavailability of Cu was greater in the alkaline soils than in the acidic soil (Lh), which can be attributed to the high organic matter content of the Lh soil which complexes Cu and impairs its uptake by the plants. The concentration of metals in the plants increased with the sewage sludge dose. The effect of the soil type on the metal concentration in plants was greater that the effect of the dose. Key words: Soils, sewage sludge, heavy metals, bioavailability, sunflower


Author(s):  
Thabet Tolaymat ◽  
Timothy Townsend

Non-hazardous industrial solid wastes are frequently proposed for beneficial use rather than being disposed in MSW landfills. An example of such an industrial waste is waste-to-energy (WTE) ash. Proposed beneficial use projects for WTE ash often involve some form of land application. Prior to the land application of any solid waste, the possible risk to human health and the environment should be assessed. The Florida Department of Environmental Protection (FDEP) has developed a beneficial use guidance document that provides WTE ash generators with the testing requirements that must be demonstrated before a particular beneficial use scenario is determined appropriate (FDEP 2001). For WTE ash to be deemed safe for land application, the risk associated with two separate pathways should be assessed: direct human exposure and the contamination of groundwater via leaching. While organic pollutants (e.g. dioxins) might be a concern, heavy metals are typically the pollutants that most limit the potential for reuse; heavy metals are the focus of the discussion in this paper.


2018 ◽  
Vol 12 (5) ◽  
pp. 27-34
Author(s):  
Mohsen Mohammadi Galangash ◽  
◽  
Mostafa Mahdavianpour ◽  
Samira Ghafouri Safa ◽  
◽  
...  

Background: Sewage treatment leads to the production of large amount of sludge, containing organic matter and nutrients and considering requirements for recycling could be used as fertilizer. The sludge may also contain various pollutants that pose serious harm to human health and the environment. This study aimed at characterizing the industrial sewage sludge and evaluating its capability as fertilizer with no or a minor pretreatment. Methods: The sludge’s organic matter and nutrient contents, heavy metals, organic and microbial contaminants were determined and compared to literature data and international guidelines. Results: The organic matter, nutrients, phosphorous, and exchangeable potassium contents of the sludge samples were significantly high as follows: 33.6 ± 2.85 %, 6.29 ± 0.16 %, 1.41± 0.01 % and 1.236 g/kg, respectively. The concentration of heavy metals was 94.3 ± 59.5 mg/kg. The concentration of heavy metals, organic contaminants, such as PCBs, BTEX, and PAHs, and microbial contents (coliforms & E. coli) were lower than those reported by other studies. Toluene concentration was high. Conclusions: All characteristics of the sludge samples, except for the toluene and microbial contaminations, were acceptable for its use as land fertilizer. Both toluene and microbial contaminants can be removed, using thermal conditioning as a pretreatment.


1995 ◽  
Vol 75 (4) ◽  
pp. 513-524 ◽  
Author(s):  
M. D. Webber ◽  
C. Wang

Studies were conducted to determine the concentrations of a large number of industrial organic compounds in selected Canadian agricultural soils and to assess the potential for land application of municipal sludges to cause significant polynuclear aromatic hydrocarbon (PAH), organochlorine pesticide (OC) and polychlorinated biphenyl (PCB) contamination of agricultural land. Twenty-four Agriculture and Agri-Food Canada, Soil Quality Evaluation Program (SQEP) benchmark soils and six intensively cropped southern Ontario soils exhibited similar small concentrations of a few base-neutral and acid (BN&A) extractable industrial organic compounds (seldom >1 mg kg−1 dry wt), PCBs (<200 μg kg−1 dry wt) and organophosphorus pesticides (OPs). Fonofos, the only OP detected, was observed at concentrations <100 μg kg−1 dry wt. Neutral and phenoxy acid herbicide analyses for 13 soils (seven SQEP and six intensively cropped) indicated infrequent detection of these compounds. There was no detection of carbamate herbicides. In most soils, only trace amounts (<10 μg kg−1 dry wt) of OCs were observed but in one intensively cropped soil, DDT exceeded 70 mg kg−1 dw. A greater incidence of compounds such as alpha chlordane, dieldrin, aldrin and DDT in intensively cropped than in other soils is assumed to reflect increased use of these compounds for intensive crop production. Soils treated with sludge according to recommended practice exhibited minor increases in PAH, OC and PCB concentrations. There is no risk to human health or the environment from industrial organic conpounds, except possibly DDT, in Canadian agricultural soils that have received no sludge or from PAHs, OCs and PCBs in soils that have received southern Ontario sludges according to recommended practice. Key words: Municipal sludge, industrial organic compounds, organic contaminants, agricultural sustainability, soil


2018 ◽  
Vol 4 (01) ◽  
pp. 41-48
Author(s):  
Madhu Prakash Srivastava ◽  
Nupur Srivastava ◽  
Neeta Sharma ◽  
Yogesh Kumar Sharma

Increased industrialization and human activities have impacted on the environment through disposal waste containing heavy metals. Heavy metals pollution of agricultural soil has been mainly due to the disposal of industrial wastewater, sewage and sewage sludge to agricultural land. Conventional methods for the removal of heavy metals from aqueous solutions are not economically and environmental friendly because it has produced massive quantity of toxic chemical compounds. Naturally fungi have a large variety of extracellular proteins, organic acids and other metabolites. Fungi can adapt in any ecosystems and any environmental conditions Interest in processes involving heavy metal uptake by microorganisms has increased considerably in recent years due to the biotechnological potential of micro-organisms in removing and/or recovery of metals.


2014 ◽  
Vol 2014 (16) ◽  
pp. 5328-5334
Author(s):  
Mandu Inyang ◽  
Riley Flowers ◽  
Marco Velarde ◽  
Drew McAvoy ◽  
Eric Dickenson

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jamilah Borjac ◽  
Manal El Joumaa ◽  
Lobna Youssef ◽  
Rawan Kawach ◽  
Diane A. Blake

Recently, there has been a worldwide concern regarding soil contamination by heavy metals and organic compounds, especially in the developing countries including Lebanon that has suffered from solid waste mismanagement for decades. Deir Kanoun Ras El Ain is a village in southern Lebanon that possesses one of the country’s worst dumps, and its leachates influx into a running canal that irrigates surrounding agricultural lands. The aim of this study was to determine the levels of some toxic heavy metals and organic compounds in different soil samples collected from the dump and along the canal during winter and summer seasons. Six research sites (four from the dump and two along the canal) were selected, and the soil samples for analysis were collected from a depth of around 10 cm. Heavy metals (lead, cadmium, arsenic, and mercury) and organic compounds (phthalates, bisphenol A, and polyaromatic hydrocarbons) content were determined using atomic absorption and high pressure liquid chromatography, respectively. The conducted research confirmed high levels of contamination in the collected soil samples by both heavy metals and organic compounds. The present study provided evidence that different sampling sites accumulated heavy metals at concentrations that exceeded the average maximum permissible levels for sewage sludge and agricultural land. These findings suggest the need for mitigation measures by the Lebanese authorities and new waste management programs to resolve the problems associated with uncontrolled dumping of solid wastes in Lebanon.


Author(s):  
MdDidarul Islam, Ashiqur Rahaman, Aboni Afrose

This study was based on determining concentration of essential and toxic heavy metal in coconut water available at a local Hazaribagh area in Dhaka, Bangladesh. All essential minerals, if present in the drinking water at high concentration or very low concentration, it has negative actions. In this study, fifteen samples and eight heavy metals were analyzed by Atomic Absorption Spectroscopy (AAS) method which was followed by wet ashing digestion method. The concentration obtained in mg/l were in the range of 0.3 to 1.5, 7.77 to 21.2, 0 to 0.71, 0 to 0.9, 0 to 0.2, 0.9 to 17.3, 0.1 to 0.9, 0 to 0.9 and 0 to 0.7 for Fe, Ni, Cu, Cd, Cr, Zn, Pb and Se respectively. From this data it was concluded that any toxic heavy metals like Cd, Cr, Pb and Ni exceed their toxicity level and some essential nutrients were in low concentration in those samples. 


Sign in / Sign up

Export Citation Format

Share Document