Stamen Movement and its Biological Significance in Compositae Plants

2014 ◽  
Vol 1073-1076 ◽  
pp. 1079-1085
Author(s):  
Jia Shi Zeng ◽  
Dong Xu Wang ◽  
Yang Liu ◽  
Xiao Ping Lu

There is a unique inflorescence composition and stamen structure in Compositae. Stamen structure, filament movement and its mechanism was analyzed and discussed, with cosmos and small sunflowers as experimental materials, by using morphological anatomy, microscopic measurement, tabletting observation. The results showed that: (1) There was a certain regularity in the opening of tubular floral organ in capitulum, of which their movements were initiated from outside to inside. (2) The mainly cause of stamen movement in Compositae came from the changes filaments length. (3) Stamen movement was not a simple physical movement-with filaments shortening, cell structure also has changed. (4) The filament movement in Compositae is not only beneficial to itself fully stretching, but also reduces the interference during pollen spreading.

1993 ◽  
Vol 41 (5) ◽  
pp. 417 ◽  
Author(s):  
GJ Howell ◽  
AT Slater ◽  
RB Knox

Secondary pollen presentation is the developmental relocation of pollen from the anthers onto another floral organ which then functions as the pollen presenting organ for pollination. Nine different types have been identified in sixteen angiosperm families according to which organ is used for presentation, whether the pollen is exposed or concealed within a structure and how pollen is loaded onto the presenting surface: (1) Enveloping bloom presenters (Araceae); (2) Perianth presenters with exposed pollen presentation (Epacridaceae); (3) Androecial presenters (Santalaceae); (4) Terminal stylar presenters with passive pollen placement and concealed stigmas (Rubiaceae and Proteaceae); (5) Terminal stylar presenters with passive pollen placement and sub-terminal stigmas (Marantaceae and Polygalaceae); (6) Terminal stylar presenters with active pollen placement (Asteraceae, Calyceraceae and Lobeliaceae); (7) Sub-terminal stylar presenters (Campanulaceae, Cannaceae, Fabaceae and Myrtaceae); (8) Exposed stigmatic presenters (Rubiaceae); (9) Indusial stigmatic presenters (Goodeniaceae and Brunoniaceae). Secondary pollen presentation occurs in three monocotyledon and thirteen dicotyledon families. The presentation types appear to have been independently derived indicating that secondary pollen presentation is a character with a selective advantage. In all but the enveloping bloom type of secondary pollen presentation, developmental relocation of pollen requires simultaneous, introrse anther dehiscence and a close association of the presenting organ to the anthers prior to anthesis. The various secondary pollen presentation systems may be modified to promote xenogamy or autogamy and this can even change during anthesis. Most plants which have secondary pollen presentation, display reduced herkogamy within the flower to facilitate pollination. Increased risk of self-pollination due to this may be overcome through dichogamy, herkogamy within inflorescences, dry stigmas, self-incompatibility systems and passive or active control over pollinator behaviour. Enhanced male function of the flowers of secondary pollen presenting plants is also evident through extension of the male phase by the protection, controlled release and precise placement and receipt of pollen. Plants displaying secondary pollen presentation are almost always protandrous.


2013 ◽  
Vol 4 (5) ◽  
pp. e630-e630 ◽  
Author(s):  
M-f He ◽  
S Wang ◽  
Y Wang ◽  
X-n Wang

Author(s):  
Marek Malecki ◽  
James Pawley ◽  
Hans Ris

The ultrastructure of cells suspended in physiological fluids or cell culture media can only be studied if the living processes are stopped while the cells remain in suspension. Attachment of living cells to carrier surfaces to facilitate further processing for electron microscopy produces a rapid reorganization of cell structure eradicating most traces of the structures present when the cells were in suspension. The structure of cells in suspension can be immobilized by either chemical fixation or, much faster, by rapid freezing (cryo-immobilization). The fixation speed is particularly important in studies of cell surface reorganization over time. High pressure freezing provides conditions where specimens up to 500μm thick can be frozen in milliseconds without ice crystal damage. This volume is sufficient for cells to remain in suspension until frozen. However, special procedures are needed to assure that the unattached cells are not lost during subsequent processing for LVSEM or HVEM using freeze-substitution or freeze drying. We recently developed such a procedure.


Author(s):  
D. Caillard ◽  
J.L. Martin

The behaviour of the dislocation substructure during the steady stage regime of creep, as well as its contribution to the creep rate, are poorly known. In particular, the stability of the subboundaries has been questioned recently, on the basis of experimental observations |1||2| and theoretical estimates |1||3|. In situ deformation experiments in the high voltage electron microscope are well adapted to the direct observation of this behaviour. We report here recent results on dislocation and subboundary properties during stationary creep of an aluminium polycristal at 200°C.During a macroscopic creep test at 200°C, a cell substructure is developed with an average cell size of a few microns. Microsamples are cut out of these specimens |4| with the same tensile axis, and then further deformed in the microscope at the same temperature and stain rate. At 1 MeV, one or a few cells can be observed in the foil thickness |5|. Low electron fluxes and an image intensifier were used to reduce radiation damage effects.


Author(s):  
William P. Sharp ◽  
Robert W. Roberson

The aim of ultrastructural investigation is to analyze cell architecture and relate a functional role(s) to cell components. It is known that aqueous chemical fixation requires seconds to minutes to penetrate and stabilize cell structure which may result in structural artifacts. The use of ultralow temperatures to fix and prepare specimens, however, leads to a much improved preservation of the cell’s living state. A critical limitation of conventional cryofixation methods (i.e., propane-jet freezing, cold-metal slamming, plunge-freezing) is that only a 10 to 40 μm thick surface layer of cells can be frozen without distorting ice crystal formation. This problem can be allayed by freezing samples under about 2100 bar of hydrostatic pressure which suppresses the formation of ice nuclei and their rate of growth. Thus, 0.6 mm thick samples with a total volume of 1 mm3 can be frozen without ice crystal damage. The purpose of this study is to describe the cellular details and identify potential artifacts in root tissue of barley (Hordeum vulgari L.) and leaf tissue of brome grass (Bromus mollis L.) fixed and prepared by high-pressure freezing (HPF) and freeze substitution (FS) techniques.


Author(s):  
Vitthal S. Kulkarni ◽  
Wayne H. Anderson ◽  
Rhoderick E. Brown

The biological significance of the sphingomyelins (SM) and monoglycosylated sphingolipids like galactosylceramides (GalCer) are well documented Our recent investigation showed tubular bilayers in the aqueous dispersions of N-nervonoyl GalCer [N-(24:lΔ15,cls) GalCer] (a major fatty acyl moiety of natural GalCer). To determine the influence of lipid head groups on the resulting mesophasic morphology, we investigated microstructural self-assemblies of N-nervonoyl-SM [N-(24:1 Δ15,cls) SM; the second most abundant sphingomyelin in mammalian cell membranes], 1- palmitoyl-2-nervonoyl phosphatidylcholine [PNPC] (the lipid species with the same acyl chain configuration as in N-(24: 1) GalCer) and also compared it with egg-SM by freeze-fracture EM.Procedures for synthesizing and purifying N-(24:1) GalCer, N-(24:1) SM, and PNPC have been reported . Egg-SM was purchased from Avanti Polar Lipids, Alabaster AL. All lipids were >99% pure as checked by thin layer chromatography. Lipid dispersions were prepared by hydrating dry lipid with phosphate buffer (pH 6.6) at 80-90°C (3-5 min), vigorously vortexing (1 min) and repeating this procedure for three times prior to three freeze-thaw cycles.


Author(s):  
Dong Yuming ◽  
Yang Guanglin ◽  
Wu Jifeng ◽  
Chen Xiaolin

On the basis of light microscopic observation, the ultrastructural localization of CEA in gastric cancer was studied by immunoelectron microscopic technique. The distribution of CEA in gastric cancer and its biological significance and the mechanism of abnormal distribution of CEA were further discussed.Among 104 surgically resected specimens of gastric cancer with PAP method at light microscopic level, the incidence of CEA(+) was 85.58%. All of mucinous carcinoma exhibited CEA(+). In tubular adenocarcinoma the incidence of CEA(+) showed a tendency to rising with the increase of degree of differentiation. In normal epithelia and intestinal metaplasia CEA was faintly present and was found only in the luminal surface. The CEA staining patterns in cancer cells were of three types--- cytoplasmic, membranous and weak reactive type. The ultrastructural localization of CEA in 14 cases of gastric cancer was studied by immunoelectron microscopic technique.There was a little or no CEA in the microvilli of normal epithelia. In intestinal metaplasia CEA was found on the microvilli of absorptive cells and among the mucus particles of goblet cells. In gastric cancer CEA was also distributed on the lateral and basal surface or even over the entire surface of cancer cells and lost their polarity completely. Many studies had proved that the alterations in surface glycoprotein were characteristic changes of tumor cells. The antigenic determinant of CEA was glycoprotein, so the alterations of tumor-associated surface glycoprotein opened up a new way for the diagnosis of tumors.


Author(s):  
Tim Oliver ◽  
Michelle Leonard ◽  
Juliet Lee ◽  
Akira Ishihara ◽  
Ken Jacobson

We are using video-enhanced light microscopy to investigate the pattern and magnitude of forces that fish keratocytes exert on flexible silicone rubber substrata. Our goal is a clearer understanding of the way molecular motors acting through the cytoskeleton co-ordinate their efforts into locomotion at cell velocities up to 1 μm/sec. Cell traction forces were previously observed as wrinkles(Fig.l) in strong silicone rubber films by Harris.(l) These forces are now measureable by two independant means.In the first of these assays, weakly crosslinked films are made, into which latex beads have been embedded.(Fig.2) These films report local cell-mediated traction forces as bead displacements in the plane of the film(Fig.3), which recover when the applied force is released. Calibrated flexible glass microneedles are then used to reproduce the translation of individual beads. We estimate the force required to distort these films to be 0.5 mdyne/μm of bead movement. Video-frame analysis of bead trajectories is providing data on the relative localisation, dissipation and kinetics of traction forces.


Author(s):  
Henry H. Eichelberger ◽  
John G. Baust ◽  
Robert G. Van Buskirk

For research in cell differentiation and in vitro toxicology it is essential to provide a natural state of cell structure as a benchmark for interpreting results. Hypothermosol (Cryomedical Sciences, Rockville, MD) has proven useful in insuring the viability of synthetic human epidermis during cold-storage and in maintaining the epidermis’ ability to continue to differentiate following warming.Human epidermal equivalent, EpiDerm (MatTek Corporation, Ashland, MA) consisting of fully differentiated stratified human epidermal cells were grown on a microporous membrane. EpiDerm samples were fixed before and after cold-storage (4°C) for 5 days in Hypothermosol or skin culture media (MatTek Corporation) and allowed to recover for 7 days at 37°C. EpiDerm samples were fixed 1 hour in 2.5% glutaraldehyde in sodium cacodylate buffer (pH 7.2). A secondary fixation with 0.2% ruthenium tetroxide (Polysciences, Inc., Warrington, PA) in sodium cacodylate was carried out for 3 hours at 4°C. Other samples were similarly fixed, but with 1% Osmium tetroxide in place of ruthenium tetroxide. Samples were dehydrated through a graded acetone series, infiltrated with Spurrs resin (Polysciences Inc.) and polymerized at 70°C.


Author(s):  
Ann Cleary

Microinjection of fluorescent probes into living plant cells reveals new aspects of cell structure and function. Microtubules and actin filaments are dynamic components of the cytoskeleton and are involved in cell growth, division and intracellular transport. To date, cytoskeletal probes used in microinjection studies have included rhodamine-phalloidin for labelling actin filaments and fluorescently labelled animal tubulin for incorporation into microtubules. From a recent study of Tradescantia stamen hair cells it appears that actin may have a role in defining the plane of cell division. Unlike microtubules, actin is present in the cell cortex and delimits the division site throughout mitosis. Herein, I shall describe actin, its arrangement and putative role in cell plate placement, in another material, living cells of Tradescantia leaf epidermis.The epidermis is peeled from the abaxial surface of young leaves usually without disruption to cytoplasmic streaming or cell division. The peel is stuck to the base of a well slide using 0.1% polyethylenimine and bathed in a solution of 1% mannitol +/− 1 mM probenecid.


Sign in / Sign up

Export Citation Format

Share Document