Comparative Study of Eight Strains of Lactic Acid Bacteria In Vitro Antioxidant Activity

2014 ◽  
Vol 1073-1076 ◽  
pp. 183-188
Author(s):  
Yue Qi Wang ◽  
Yan Yan Wu ◽  
Lai Hao Li ◽  
Xi Chang Wang ◽  
Qiu Xing Cai ◽  
...  

In order to achieve lactic acid bacteria (LAB) with high antioxidant activity and provide a theoretical reference for the development of natural antioxidants, 8 stains of LAB were studied by hydroxyl radical scavenging experiments, DPPH and hydroxyl radical assays, anti-lipid peroxidation assays and reducing powder evaluation experiments. The results showed that the antioxidant capabilities of the 8 strains of LAB were quite different and the fermentation supernatant had better antioxidant activity than the intact cell and the intracellular extracts. Moreover, Lb,Lr and Lm1strains demonstrated better capacity on antioxidant activity than others, which could be considered as potential antioxidant strains to be applied in functional foods.

2011 ◽  
Vol 78 (4) ◽  
pp. 1087-1096 ◽  
Author(s):  
Rossana Coda ◽  
Carlo Giuseppe Rizzello ◽  
Daniela Pinto ◽  
Marco Gobbetti

ABSTRACTA pool of selected lactic acid bacteria was used for the sourdough fermentation of various cereal flours with the aim of synthesizing antioxidant peptides. The radical-scavenging activity of water/salt-soluble extracts (WSE) from sourdoughs was significantly (P< 0.05) higher than that of chemically acidified doughs. The highest activity was found for whole wheat, spelt, rye, and kamut sourdoughs. Almost the same results were found for the inhibition of linoleic acid autoxidation. WSE were subjected to reverse-phase fast protein liquid chromatography. Thirty-seven fractions were collected and assayedin vitro. The most active fractions were resistant to further hydrolysis by digestive enzymes. Twenty-five peptides of 8 to 57 amino acid residues were identified by nano-liquid chromatography-electrospray ionization-tandem mass spectrometry. Almost all of the sequences shared compositional features which are typical of antioxidant peptides. All of the purified fractions showedex vivoantioxidant activity on mouse fibroblasts artificially subjected to oxidative stress. This study demonstrates the capacity of sourdough lactic acid bacteria to release peptides with antioxidant activity through the proteolysis of native cereal proteins.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0249250
Author(s):  
Hsing-Chun Kuo ◽  
Ho Ki Kwong ◽  
Hung-Yueh Chen ◽  
Hsien-Yi Hsu ◽  
Shu-Han Yu ◽  
...  

In this study, different probiotics commonly used to produce fermented dairy products were inoculated independently for Chenopodium formosanum Koidz. fermentation. The strain with the highest level of antioxidant activity was selected and the fermentation process was further optimized via response surface methodology (RSM). Lactobacillus plantarum BCRC 11697 was chosen because, compared to other lactic acid bacteria, it exhibits increased free radical scavenging ability and can produce more phenolic compounds, DPPH (from 72.6% to 93.2%), and ABTS (from 64.2% to 76.9%). Using RSM, we further optimize the fermentation protocol of BCRC 11697 by adjusting the initial fermentation pH, agitation speed, and temperature to reach the highest level of antioxidant activity (73.5% of DPPH and 93.8% of ABTS). The optimal protocol (pH 5.55, 104 rpm, and 24.4°C) resulted in a significant increase in the amount of phenolic compounds as well as the DPPH and ABTS free radical scavenging ability of BCRC 11697 products. The IC50 of the DPPH and ABTS free radical scavenging ability were 0.33 and 2.35 mg/mL, respectively, and both protease and tannase activity increased after RSM. An increase in lower molecular weight (<24 kDa) protein hydrolysates was also observed. Results indicated that djulis fermented by L. plantarum can be a powerful source of natural antioxidants for preventing free radical-initiated diseases.


2016 ◽  
Vol 79 (11) ◽  
pp. 1919-1928 ◽  
Author(s):  
SHUANG XU ◽  
TAIGANG LIU ◽  
CHIRAZ AKOREDE IBINKE RADJI ◽  
JING YANG ◽  
LANMING CHEN

ABSTRACT In this study, we analyzed Chinese traditional fermented food to isolate and identify new lactic acid bacteria (LAB) strains with novel functional properties and to evaluate their cellular antioxidant and bile salt hydrolase (BSH) activities in vitro. A sequential screening strategy was developed to efficiently isolate and obtain 261 LAB strains tolerant of bile salt, acid, and H2O2 from nine Chinese traditional fermented foods. Among these strains, 70 were identified as having 2,2-diphenyl-1-picrylhydrazyl radical scavenging and/or BSH activity. These strains belonged to eight species: Enterococcus faecium (33% of the strains), Lactobacillus plantarum (26%), Leuconostoc mesenteroides (14%), Pediococcus pentosaceus (6%), Enterococcus durans (9%), Lactobacillus brevis (9%), Pediococcus ethanolidurans (3%), and Lactobacillus casei (1%). The pulsed-field gel electrophoresis genome fingerprinting profiles of these strains revealed 38 distinct pulsotypes, indicating a high level of genomic diversity among the tested strains. Twenty strains were further evaluated for hydroxyl radical scavenging activity, reducing power, and ferrous ion chelating activity exerted by both viable intact cells and/or intracellular cell-free extracts. Some strains, such as L. plantarum D28 and E. faecium B28, had high levels of both cellular antioxidant and BSH activities in vitro. These strains are promising probiotic components for health-promoting functional foods.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1343 ◽  
Author(s):  
You Luo ◽  
Bin Peng ◽  
Weiqian Wei ◽  
Xiaofei Tian ◽  
Zhenqiang Wu

Guava (Psidium guajava L., Myrtaceae) leaves have been used as a folk herbal tea to treat diabetes for a long time in Asia and North America. In this study, we isolated polysaccharides from guava leaves (GLP), and evaluated its antioxidant activity in vitro and anti-diabetic effects on diabetic mice induced by streptozotocin combined with high-fat diet. The results indicated that GLP exhibited good DPPH, OH, and ABTS free-radical scavenging abilities, and significantly lowered fasting blood sugar, total cholesterol, total triglycerides, glycated serum protein, creatinine, and malonaldehyde. Meanwhile, it significantly increased the total antioxidant activity and superoxide dismutase (SOD) enzyme activity in diabetic mice, as well as ameliorated the damage of liver, kidney, and pancreas. Thus, polysaccharides from guava leaves could be explored as a potential antioxidant or anti-diabetic agents for functional foods or complementary medicine.


2010 ◽  
Vol 5 (2) ◽  
pp. 224-230 ◽  
Author(s):  
Boobalan Raja ◽  
Kodukkur Pugalendi

AbstractIn this study, an aqueous extract of leaves from Melothria maderaspatana was tested for in vitro antioxidant activity. Free radical scavenging assays, such as hydroxyl radical, hydrogen peroxide, superoxide anion radical and 2,2-diphenyl-1-picryl hydrazyl (DPPH), 2,2’-azinobis-(3-ethyl-enzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, and reducing power assay, were studied. The extract effectively scavenged hydroxyl radical, hydrogen peroxide and superoxide anion radicals. It also scavenged DPPH and ABTS radicals. Furthermore, it was found to have reducing power. All concentrations of leaf extract exhibited free radical scavenging and antioxidant power, and the preventive effects were in a dose-dependent manner. The antioxidant activities of the above were compared to standard antioxidants such as butylated hydroxytoluene (BHT), ascorbic acid, and α-tocopherol. The results obtained in the present study indicate that the M. maderaspatana extract could be considered a potential source of natural antioxidant.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9077
Author(s):  
Zizhong Tang ◽  
Caixia Zhou ◽  
Yi Cai ◽  
Yujia Tang ◽  
Wenjun Sun ◽  
...  

Background Amaranthus hybridus L. is an annual, erect or less commonly ascending herb that is a member of the Amaranthaceae family. Polysaccharides extracted from traditional Chinese medicines may be effective substances with antioxidant activity. Methods In this study, we isolated crude polysaccharides from A. hybridus (AHP-M) using microwave-assisted extraction. Then, the AHP-M was purified by chromatography with DEAE-32 cellulose, and two fractions, AHP-M-1 and AHP-M-2, were obtained. The structural characteristics of AHP-M-1 and AHP-M-2 were investigated, and their antioxidant activities were analyzed in vitro. Results We found that the monosaccharide composition of AHP-M-1 was different from that of AHP-M-2. The molecular weights of AHP-M-1 and AHP-M-2 were 77.625 kDa and 93.325 kDa, respectively. The results showed that the antioxidant activity of AHP-M-2 was better than that of AHP-M-1. For AHP-M-2, the DPPH radical scavenging rate at a concentration of 2 mg/mL was 78.87%, the hydroxyl radical scavenging rate was 39.34%, the superoxide anion radical scavenging rate was 80.2%, and the reduction ability of Fe3+ was approximately 0.90. The total antioxidant capacity per milligram of AHP-M-2 was 6.42, which was higher than that of Vitamin C (Vc). Conclusion The in vitro test indicated that AHP-M-1 and AHP-M-2 have good antioxidant activity, demonstrating that A. hybridus L. polysaccharide has immense potential as a natural antioxidants.


2019 ◽  
Vol 9 (2) ◽  
pp. 372-375 ◽  
Author(s):  
Gaurav Saxena ◽  
Abhilasha Mittal ◽  
Abdul Wadood Siddiqui

Nature has offered us diverse curative herbs having with powerful antioxidant phytochemicals. Ocimum (Lamiaceae) is a notable source of volatile oils and flavouring agents in general and primarily of eugenol, methyl eugenol, linalool, methyl chavicol, etc. Karpoora Thulasi is a member of this genus; nevertheless, not much literature has been reported on its safety and antioxidant potential. In this investigation, we did a pre-clinical safety assessment of concentrate of O. kilimandscharicum on Sprague Dawley rodents. Toxicological concordat of the O. kilimandscharicum concentrate was carried out following OECD guidelines 423. Further, to verify the traditional efficacy and elucidate the mechanism, the present study compared in-vitro antioxidant activity of the plant by DPPH, ABTS and Hydroxyl radical scavenging method using ascorbic acid as the standard. In acute oral toxicity, no treatment-related death or toxic signs were observed. Moreover, the study revealed that the O. kilimandscharicum extract could be well tolerated up to the dose 2000 mg/kg body weight and could be classified as Category 5. Moreover, ABTS free radical activity of the extract was 79.2148 while that of DDPH Inhibition potential was found to be 70.72758. Our findings present substantiation that the crude extracts of O. kilimandscharicum is a likely source of natural antioxidants, and this justified its long-established uses.  Keywords: Ocimum kilimandscharicum, Acute Toxicity, In-vitro Antioxidant Activity DPPH, ABTS


2011 ◽  
Vol 1 (7) ◽  
pp. 232 ◽  
Author(s):  
Xican Li ◽  
Xiaozhen Wang ◽  
Dongfeng Chen ◽  
Shuzhi Chen

Background: Protocatechuic acid (PCA) is a natural phenolic acid widely distributed in plants and is considered as an active component of some traditional Chinese herbal medicines such as Cibotium barometz (L.) J.Sm, Stenoloma chusanum (L.) Ching, Ilex chinensis Sims. PCA was reported to possess various pharmacological effects which may be closely correlated with its antioxidant activities. However, the antioxidant of PCA has not been investigated systematically yet. Methods: In the study, the antioxidant activities of protocatechuic acid were measured in vitro using various antioxidant assays including 1,1-diphenyl-2-picryl-hydrazyl (DPPH•), 2,2’-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS+•), superoxide anion radicals (•O2-) and hydroxyl radical (•OH) scavenging activity, ferric ions (Fe3+) and cupric ions (Cu2+) reducing power, ferrous ions (Fe2+) and cupric ions (Cu2+) chelating activity, compared with the positive controls Trolox or BHT.Results: In all assays, PCA along with positive controls exhibited dose-dependently antioxidant ability. Comparing to a standard antioxidant Trolox, the relative antioxidant activity of PCA (i.e. the ratio of IC50(Trolox)/IC50(PCA) ) was calculated as 2.8, 2.3, 3.7, 6.1, 4.2, 1.0, 2.7, 1.5, respectively, for DPPH, ABTS, reducing power (Fe3+), reducing power (Cu2+), superoxide anion radical-scavenging, hydroxyl radical-scavenging, chelating ability (Fe2+) and chelating ability (Cu2+). Conclusion: Comparing to Trolox, PCA shows much more effective antioxidant activity in vitro in both lipid and aqueous media. Hence, it could therefore be used in pharmacological or food industry as a natural antioxidant. It may exhibit antioxidant activity by both chelating metal transition ions as well as by scavenging free radicals via donating hydrogen atom (H•) or electron (e).Keywords: Protocatechuic acid, antioxidant, reducing power, free radical-scavenging, chelating ability.


2019 ◽  
Vol 18 (2) ◽  
pp. 233-240
Author(s):  
Wilfred O Obonga ◽  
Charles O Nnadi ◽  
Chinonye C Chima ◽  
Sunday N Okafor ◽  
Edwin O Omeje

This study evaluated the antioxidant and anti-inflammatory properties of Marantochloa leucantha (Marantaceae). The in vitro antioxidant activity of the extracts and solvent fractions was evaluated by 1,1-diphenyl- 2-picrylhydrazyl (DPPH) radical scavenging and ferric reducing antioxidant potential (FRAP) assay models and in vivo anti-inflammatory activity by the rat paw edema model. The phytochemical screening indicated the presence of tannins, terpenoids, steroids, flavonoids, reducing sugar and phenolics. The antioxidant assay showed that all the extracts exhibited high antioxidant activity comparable with ascorbic and gallic acid controls. In DPPH model, a 250 μg/ml EtOAc fraction of the leaves showed antioxidant activity of 93.9 ± 1.7 % (EC50 0.82 μg/ml) and a 1000 μg/ml of same stem fraction produced 91.9 ± 0.3 % activity (EC50 1.38 μg/ml). In the FRAP model, EtOAc fraction exhibited 31.1±0.7 and 92.0 ± 2.2 μM Fe2+/g of dried leaves and stem, respectively at 1000 μg/ml FeSO4 equivalent. The anti-inflammatory potential of the plant showed that the crude stem extract and fractions at 200 - 600 mg/kg exhibited significant (p < 0.01) dose-related inhibition of paw edema in rats. A 200 mg/kg EtOAc fraction showed 18.8 % inhibition compared to 31 % observed in diclofenac-treated rats in 2 h post albumin challenge. These findings validated the folkloric use of this plant in the treatment of diseases associated to the oxidative stress and could further provide promising lead compounds with potent antioxidant and anti-inflammatory activities Dhaka Univ. J. Pharm. Sci. 18(2): 233-240, 2019 (December)


Author(s):  
Azita Faraki ◽  
Fatemeh Rahmani

Probiotics and Lactic Acid Bacteria play important roles such as the production of antimicrobial compounds and other metabolites. So they have positive effects on human health. When reactive oxygen species generated in excess or cellular defenses are deficient, biomolecules can be damaged by the oxidative stress process. Various studies have shown that the best way to protect the human body from the effects of oxidation reactions is to avoid them, which can be accomplished by using antioxidants. Due to the damages of synthetic antioxidants, their usage has been discussed. Nowadays natural antioxidants derived from bio-resources have recently gained a lot of attention as a potential replacement for synthetic antioxidants. Probiotic bacteria are thought to defend against oxidative stress by restoring the gut microbiota, according to hypothesis of some scientists. This type of microorganisms indicated their antioxidant activity by producing and increasing antioxidant enzymes, production of secondary metabolites, small hydrolyzed peptides in food, resistance to the presence of hydrogen peroxide, and production of intracellular and extracellular compounds such as Exopolysaccharides. Also, they have shown their positive effect on in vivo models. In conclusion, according to the results of studies, lactic acid bacteria and probiotics are significant sources of natural antioxidants. Therefore, they have important research value and market development potential. Also, it should be noted that the mechanism of antioxidant activity of this group of microorganisms has not been fully investigated, this requires further research.


Sign in / Sign up

Export Citation Format

Share Document