Study on the Removal Effect of Chromium(VI) in Wastewater by Rice Husk

2014 ◽  
Vol 1073-1076 ◽  
pp. 825-828 ◽  
Author(s):  
Xue Min Dai ◽  
Shu Na Wang ◽  
Xia Wang

Rice husk was used as an adsorbent to study the adsorption of Cr (VI) from wastewater, Based on the experimental studies on influences of the particle size of rice husk, solution pH value, adsorption time, temperature and rice husk dose, the optimal conditions of the adsorption were determined as follows: temperature of 35°C, pH of 2, the particle size of rice husk in the range of 80-100 mesh, adsorption time of 3h, dose of 30g/0.2g. Under the optimal conditions, the removal rate of chromium from wastewater by rice husk can reach 91%.

2015 ◽  
Vol 713-715 ◽  
pp. 2909-2912
Author(s):  
Bin Zhao ◽  
Li Ke Zou ◽  
Guo Yong Li

Cuprous oxide catalyst was prepared and applied as photocatalist to treat chromium (VI) in wastewater, and the photocatalytic activity of the cuprous oxide was studied. The optimal conditions for the treatment was as follows: the pH of wastewater was 3, the amount of catalysts was 0.3 g/L, the reaction temperature was 60°C. Under the optimal conditions, the removal rate of chromium (IV) in wastewater reached 50% in the presence of cuprous oxide catalyst.


2011 ◽  
Vol 356-360 ◽  
pp. 493-497 ◽  
Author(s):  
Zong Ning Li ◽  
Zong Qiang Zhu ◽  
Mei Na Liang ◽  
Hong Dong Qin ◽  
Yi Nian Zhu

The influences of adsorption temperature, adsorption time, dosing quantity, adsorption environment pH value, initial concentration and bamboo charcoal type on adsorption of bamboo charcoal adsorb ammonia nitrogen in wastewater are studied. The result shows that the maximum adsorption values are 1.1715 mg/g and 0.9115 mg/g respectively at 25°C and 40°C. Bamboo charcoal can easily absorb ammonia nitrogen at low temperature condition. 180 min is a suitable adsorption time. Increasing bamboo charcoal dosing quantity is helpful to improve efficiencies of ammonia nitrogen removal in wastewater, but the adsorption capacity is declining as bamboo charcoal dosing quantity increasing. Solution pH value has a great impact on the adsorbed amount, the adsorbed effect in alkaline solution is much better than in acid one’s. The adsorption ability of the moderate temperature bamboo charcoal is higher than the high temperature one’s.


2014 ◽  
Vol 955-959 ◽  
pp. 2453-2457
Author(s):  
Hui Yang ◽  
Meng Zhao ◽  
Ji Gang Yang ◽  
Xin Chai ◽  
Yue Xu

This document studies test methods on modification of activated carbon by potassium permanganate to adsorb Cu2+. Ensure all factors’ effects on Cu2+ removal. Use potassium permanganate solution to modify activated carbon, investigate main factors’ effects on Cu2+ removal and analyze mechanism by changing potassium permanganate solution concentration, adsorption time, activated carbon’s additive amount and temperature. The results show that modification of activated carbon by 0.03mol/L potassium permanganate solution (0.03K-GAC) can adsorb Cu2+ best. 0.03K-GAC’s removal rate on Cu2+ is 98% when the initial concentration of Cu2+ is 50mg/L, the additive amount of 0.03K-GAC is 2.0g, the pH value is 5.5, the temperature is 25°C and the adsorption time is 4h. Modification of activated carbon by potassium permanganate has good adsorbability on Cu2+. Potassium permanganate solution concentration, adsorption time and additive amount can influence the adsorption of Cu2+ by activated carbon. However, temperature’s influence on the effect of adsorption is non-significant.


2012 ◽  
Vol 518-523 ◽  
pp. 121-124
Author(s):  
Hong Xia Xia ◽  
Qi Hong Zhu

This paper investigates the effect of Limonite/TiO2 combined microspheres dosage,solution pH, reaction time,light intensity on the removal rate of phenol in source water.Based on the single factor experiment, the experimental conditions are optimized by quadratic regression orthogonal rotation combination design.The quadratic orthogonal regression model of removal rate of phenol(y) to four factors of Limonite/TiO2 combined microspheres dosage(x1),pH(x2),reaction time (x3)and light intensity (x4) is established as Y=88.64+4.43X1+ 6.69X3+3.75X4-4.79X12-13.20X22-4.21X32-2.69X42+8.06X1X2-6.76X1X3-4.45X1X4.It can conclude from the model that when Limonite/TiO2 combined microspheres dosage is 1.5583g,solution pH value is 4.5095,reaction time is 102.12min,light intensity is 1710.8(x10 lux),the yield(y) reaches the maximal(95.83%) and consistent with the confirmatory experiment result..


2011 ◽  
Vol 71-78 ◽  
pp. 3029-3032 ◽  
Author(s):  
Xin Zhao ◽  
Chao Yu Hu ◽  
Xu Yan

In order to investigate the adsorption of hexavalent chrome in wastewater by peanut shell, the orthogonal test was designed to find the best adsorption conditions such as pH value, temperature, adsorption time and adsorbent dosage etc. The results show that the peanut shell is a kind of economic and efficient absorbent; hexavalent chrome removal rate can reach more than 85%, when the hexavalent chrome wastewater concentration is 30mg/L, dosing 1g peanut shells into 50mg wastewater, adjusting pH value to 2.0, adsorbing 300min at room temperature.


2012 ◽  
Vol 528 ◽  
pp. 233-236
Author(s):  
Kotchamon Yodkhum ◽  
Thawatchai Phaechamud

Fatty acids have been used as additive for modifying chitosan-based system particularly in hydrophobic manner. Generally, techniques for preparing chitosan-fatty acid conjugate system are take time, involved with high temperature and high shear force and need some surfactants. In this study, alternative technique for simply blending chitosan with fatty acid was performed by taking advantage of ionization of metal stearate and chitosan in acidic condition. Metal stearate used in this study, aluminum monostearate (Alst), was dispersed in chitosan dissolved in lactate buffer solution pH 4.5 with various concentrations of chitosan. Physicochemical properties such as pH value, viscosity and rheology, morphology and particle size of the dispersions were characterized. The pH value and viscosity of the chitosan solutions was higher as the chitosan concentration was increased. For the dispersions, their pH value was not changed by mixing time but their viscosity was decreased by mixing time. All dispersions exhibited Newtonian flow behavior. Larger mean particle size of the dispersions was observed when the mixing time was longer. At higher chitosan concentration, mean particle size of the aggregated chitosan-stearate particles was smaller than the lower chiotsan concentration systems


Author(s):  
Yanji Li ◽  
Meng Ni ◽  
Qiang He ◽  
Xiang Li ◽  
Wei Zhang ◽  
...  

Graphene and chitosan acted as the adsorbents for simulated wastewater with rhodamine B. The novel material produced by freeze-drying obviously outperformed graphene and chitosan in treating rhodamine B. Factors (e.g., contaminant concentration, reaction time, solution pH value, adsorption dose and temperature) overall impacted the adsorption. The optimal conditions for graphene-chitosan treatment of dyes included the concentration of pollutants at 400 mg/L, the dose of adsorbent as 5 mg, the solution pH at 4 and at 25∘C, and for 12 h, in which the maximal treatment amount reached 858.00 mg/g. The adsorption processes of Chitosan/graphene composites and magnetic Chitosan/graphene composites for simulated wastewater from Rhodamine B reactor followed Langmuir and Freundlich models, respectively. The in-particle diffusion model shows that the adsorption process of the composites for Rhodamine B simulated wastewater is not determined by either surface diffusion or in-particle diffusion. The magnetic Chitosan/graphene composites exhibit high recyclability, which can be respectively reused 3 times and 5 times and retain 80% adsorption capacity after being administrated with Rhodamine B simulated wastewater. By analyzing grey correlation degree, it is demonstrated that the concentration of pollutants and the reaction temperature critically affect the adsorption capacity. The electrochemical treatment with graphite rod for the Cr3+ was under the initial voltage of 30.6 V, at the pH of 5.59, and at the temperature of 18.5∘C; the removal rate of the samples was nearly 62.35% with the chromium ion concentration declined from 0.3333 g/L to 0.1255 g/L.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Xinliang Yu ◽  
Aimiao Qin ◽  
Lei Liao ◽  
Rui Du ◽  
Ning Tian ◽  
...  

Composites of nanostructure zinc oxide (nano-ZnO) and bamboo charcoal (BC) were successfully prepared via impregnation-precipitation method. The products were characterized by XRD, SEM, and EDS. Rhodamine B (RhB) and acid fuchsin (AF) were selected as the organic dyes of photocatalysis degradation under the irradiation of ultraviolet light (UV). The influence of particle size of BC, irradiation time, pH value of the solution, and additive amount of H2O2on removal of the dyes has been studied. The results show that smaller particle size of BC in the composites has a better removal effect. The composites possess the highest removal capacity for RhB and AF under the conditions of pH = 2 and pH = 5.4, respectively. The optimum additive amount of H2O2for 5 mL RhB and AF was 0.050 mL and 0.1 mL, with a removal rate of 93% and 99%, respectively.


2014 ◽  
Vol 70 (3) ◽  
pp. 414-421 ◽  
Author(s):  
C. W. Yang ◽  
D. Wang ◽  
Q. Tang

The Fenton, electro-Fenton and Fe(II)-activated peroxydisulfate (PDS) processes have been applied for the treatment of actual furfural industrial wastewater in this paper. Through the comparative study of the three processes, a suitable pretreatment technology for actual furfural wastewater treatment was obtained, and the mechanism and dynamics process of this technology is discussed. The experimental results show that Fenton technology has a good and stable effect without adjusting pH of furfural wastewater. At optimal conditions, which were 40 mmol/L H2O2 initial concentration and 10 mmol/L Fe2+ initial concentration, the chemical oxygen demand (COD) removal rate can reach 81.2% after 90 min reaction at 80 °C temperature. The PDS process also has a good performance. The COD removal rate could attain 80.3% when Na2S2O8 initial concentration was 4.2 mmol/L, Fe2+ initial concentration was 0.1 mol/L, the temperature remained at 70 °C, and pH value remained at 2.0. The electro-Fenton process was not competent to deal with the high-temperature furfural industrial wastewater and only 10.2% COD was degraded at 80 °C temperature in the optimal conditions (2.25 mA/cm2 current density, 4 mg/L Na2SO4, 0.3 m3/h aeration rate). For the Fenton, electro-Fenton and PDS processes in pretreatment of furfural wastewater, their kinetic processes follow the pseudo first order kinetics law. The pretreatment pathways of furfural wastewater degradation are also investigated in this study. The results show that furfural and furan formic acid in furfural wastewater were preferentially degraded by Fenton technology. Furfural can be degraded into low-toxicity or nontoxic compounds by Fenton pretreatment technology, which could make furfural wastewater harmless and even reusable.


2012 ◽  
Vol 518-523 ◽  
pp. 2518-2525 ◽  
Author(s):  
Yong Feng ◽  
De Li Wu ◽  
Dong Duan ◽  
Ming Ma Lu

Fenton-like reaction technologies are attracting considerable attention due to the high oxidizing ability, especially in the treatment of refractory chemical contaminants. However, some disadvantages in traditional Fenton reagents limited its wide application. In this study, pyrite, a natural iron bearing mineral, was used as a new kind of Fenton-like catalyst in the treatment of textile wastewater. The catalytic activity of pyrite and the parameters influencing the removal of Chemical Oxygen Demand (COD) and Biochemical Oxygen Demand (BOD5), such as pyrite dosage, H2O2 concentration, pH, and suspended solids (SS) had been systematically examined. Results showed that pyrite exhibited a high catalytic reactivity over a wide pH value range. At the optimal conditions, a COD removal rate of 70% and an increase in the mass ratio of BOD5/COD (B/C) from 0.25 to 0.56 were achieved in the presence of 9.7 mM H2O2 and 10 g/L pyrite at initial solution pH value of 9.0. And what’s more, a rapid decrease in solution pH and a high level of iron were observed when pyrite was added to the wastewater, probably due to the oxidative dissolution of pyrite. Consequently, Apart from the heterogeneous process, it was found that a homogeneous interaction between ferrous iron and H2O2 in a classical Haber-Weiss mechanism was also occurred. The wonderful reactivity of pyrite makes it be used as catalyst for the oxidative technology to treat the original wastewater without the need to pre-adjust the solution pH.


Sign in / Sign up

Export Citation Format

Share Document