Selected Physical and Mechanical Properties of 2-Ply Bamboo Laminated Lumber with Modified Phenol Formaldehyde

2015 ◽  
Vol 1088 ◽  
pp. 583-586
Author(s):  
Zhi Wei Huang ◽  
Ming Jie Guan

In this paper, environmental friendly phenol formaldehyde modified with larch thanaka and urea was used to make 2-ply bamboo laminated lumber. Effects of two assemble patterns (inner to inner and outer to outer) on physical and mechanical properties of 2-ply bamboo laminated lumber from carbonized and bleached bamboo strips were investigated. The results showed that modulus of elasticity (MOE) and modulus of rupture (MOR) of carbonized bamboo laminated lumber were better than that of bleached bamboo laminate lumber. It illustrated that physical and mechanical properties of carbonized bamboo laminated lumber became better. The MOE and MOR of bamboo laminated lumber, bonding with inner (low density surface) to inner surface, were better than that of outer (high density surface) to outer surface. It meant that MOE and MOR of bamboo laminated lumber were increased by the bonding surface density decreased of bamboo unit. Thickness swelling of carbonized bamboo laminated lumber was lower than that of bleached bamboo, which meant its dimensional stability was better than that of bleached bamboo laminated lumber.

FLORESTA ◽  
2021 ◽  
Vol 51 (2) ◽  
pp. 419
Author(s):  
Giuliano Ferreira Pereira ◽  
Setsuo Iwakiri ◽  
Rosilani Trianoski ◽  
Polliana D'angelo Rios ◽  
Renan Zunta Raia

The objective of this research was to evaluate the effects of thermal modifications, at different temperatures and exposure times, on the technological properties of mixed particleboard / OSB panels made out of Eucalyptus badjensis. Using the wood of Eucalyptus badjensis, Particleboard, OSB and mixed Particleboard/OSB panels (control and thermally modified) were manufactured. The mixed panels’ thermal modification was carried out under three temperatures (180ºC, 200ºC and 220ºC) and two exposure times (10 minutes and 12 minutes). For the panels’ manufacturing, 6% of phenol-formaldehyde adhesive and 1% of paraffin were employed, which was calculated based on the particles’ dry mass. The water absorption and thickness swelling properties were evaluated after 2 and 24 hours of immersion, in addition to the panels’ modulus of elasticity, modulus of rupture and internal bond. Based on the results, we were able to conclude that the thermal modification affected most of the physical properties positively. From the different exposure times studied, the most effective one was the period of 12 minutes, especially for water absorption after 2 hours, which caused a reduction of 11.27%. In turn, the most effective temperature was of 220ºC, highlighting the thickness swelling after 24 hours, which caused a swelling decrease of 23.76% in comparison with the control panels. Regarding the mechanical properties, the thermal modification, in terms of the studied exposure times and temperatures, did not affect the results of the mixed particleboard /OSB panels. 


Holzforschung ◽  
2011 ◽  
Vol 65 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Sudip Chowdhury ◽  
Vikram Yadama

Abstract The use of reactive polyolefin and phenol formaldehyde (PF) resin blends to improve the moisture durability of oriented strand composite (OSC) panels was investigated. Test panels were hot pressed with adhesive blends consisting of varying proportions of PF and maleic anhydride polypropylene (MAPP) anionic emulsion, and their physical and mechanical properties were evaluated. The addition of MAPP did not significantly affect the modulus of elasticity (MOE) of the panels, but reduced the modulus of rupture in bending (MOR) for 12% moisture content (MC) and 24-h soak specimens. An increase in PF content significantly improved the MOE and MOR of specimens subjected to the environment. Adding MAPP reduced internal bond strength, particularly at higher PF levels. The addition of MAPP and raising PF levels significantly reduced water absorption and thickness swelling of the panels. At higher MAPP levels, the water vapor transmission in OSC as well as the permeance of the material, was reduced. Composite board equilibrated to lower MC with increasing MAPP content in the resin blend. The results indicate that increasing the PF content is the most effective method of improving both moisture resistance and the mechanical properties of OSC; addition of MAPP improves the moisture resistance of the panels, but significantly reduces their mechanical properties.


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mayang Archila ◽  
Farah Diba ◽  
Dina Setyawati ◽  
. Nurhaida

The objective of this research is to evaluate the effect of the number of composite layers on the quality of the composite board from sago bark waste and plastic waste, and the number of composite layers that produce the best quality on composite board. The composite board is made with size 30 cm x 30 cm x 1 cm. The composition and division of the material was carried out manually with the polypropylene distribution divided into three parts: the front and rear respectively of 15%, and the center 70% of the plastic weight. Target density of composite boards was 0.7 g / cm3. The treatment used is based on the number of layers composing, which is 5 layers, 7 layers, 9 layers, 11 layers and 13 layers. After mixed the sago bark particle and waste of polypropylene, the materials then compressed with hot press at 180oC with pressure about ± 25 kg / cm2 for 10 minutes. The composite boards then tested the quality included physical and mechanical properties. Testing of physical and mechanical properties refers to JIS A 5908-2003 standard. Physical properties consist of density, moisture content, thickness swelling, and water absorption. Mechanical properties consist of modulus of rupture, modulus of elasticity, internal bonding, and modulus of screw holding strength. The study used a completely randomized design experiment consisting of 5 treatments and 3 replications. The results showed the average value of composite density was range between 0.6962 – 0.7896 g/cm3, the moisture content was range between 4.3388 % - 6.8066%, the thickness swelling was range between 8.2605% - 11.9615%, and water absorption was range between 17.2380% - 22.3867%. The average value of modulus of rupture was range between 60,0632 kg/cm2 – 64,4068 kg/cm2, the modulus of elasticity was range between 17935,1813g/cm2 – 32841,8278 kg/cm2, the internal bonding was range between 1,9268 kg/cm2  - 5,4119 kg/cm2, and the modulus of screw holding strength was range between 78,2530 kg/cm2 – 92,9677 kg/cm2. The composite board made from sago stem bark waste and polypropylene waste plastic with 13 layers treatment is the best composite board and fulfilled the JIS A 5908-2003 standard. Keywords: bark of sago, composite boards, layer of composite, polypropylenes plastic, waste


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9596-9610
Author(s):  
Yali Shao ◽  
Lili Li ◽  
Zhangjing Chen ◽  
Sunguo Wang ◽  
Ximing Wang

Poplar (Populus) wood was subjected in this work to thermo-hydro-mechanical treatment. The influence of the treatment parameters on the physical and mechanical properties were investigated. The wood samples were densified under three compression ratios (0%, 30%, and 50%), and thermally treated at three temperatures (180 °C, 200 °C, and 220 °C), at three thermal treatment durations (3 h, 4 h, and 5 h). The density, modulus of elasticity, modulus of rupture, radial hardness, and thickness swelling were measured. The results showed that the densities of the samples increased by 36.6% to 49.7%. As the compression rate increased, the temperature, duration, modulus of elasticity, modulus of rupture, and hardness increased. However, the dimensions of the densified samples were less stable. Compared to the densified samples, the maximum thickness swelling could be reduced by 74% (from 29.7% to 7.8%) when subjected to a thermal treatment at 220 °C for 3 h.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5422-5435
Author(s):  
Sena Maulana ◽  
Wahyu Hidayat ◽  
Ihak Sumardi ◽  
Nyoman J. Wistara ◽  
Muhammad I. Maulana ◽  
...  

Physical and mechanical properties were evaluated for bamboo-oriented strand boards (BOSB) prepared with combinations of two contrasting bamboo species and bonded with phenol formaldehyde resin under various compression ratios. The strands from the culms of Gigantochloa pseudoarundinacea and Dendrocalamus asper bamboo were steam-treated at a temperature of 126 °C and a pressure of 0.14 MPa for 1 h and then washed with a 1% NaOH solution. Three-layer dual-species bamboo-oriented strand boards with a shelling ratio of 25 to 50 to 25 (face to core to back) were manufactured with different compression ratios using an 8% phenol formaldehyde adhesive and 1% paraffin. The slenderness ratio and aspect ratio were evaluated by measuring 100 random strands to determine uniformity. The solidity profiles of the dual-species bamboo-oriented strand boards (thickness direction) were relatively uniform. The modulus of rupture, modulus of elasticity, and internal bond values of the dual-species bamboo-oriented strand boards increased as the compression ratio increased, but the water absorption and thickness swelling decreased. The dual-species bamboo-oriented strand boards prepared with compression ratios of 1.44 to 1.25 and 1.54 to 1.33 met all the requirements of CSA standard 0437 (2011). The optimum compression ratio for the preparation of dual-species bamboo-oriented strand boards was 1.44 to 1.25.


Author(s):  
Atoyebi Olumoyewa Dotun ◽  
Odeyemi Samson Olalekan ◽  
Azeez Lateef Olugbenga ◽  
Modupe Abayomi Emmanuel

This study considered the production of composite ceiling boards from both agricultural and industrial wastes. Boards with different blending proportions by weight of cement, corncob and sawdust (Cem:Ccb:Swd) were produced and tested. Physical and mechanical tests such as Water Absorption (WA), Thickness Swelling (TS), Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) were carried out on the products. The findings revealed that the board with Cem:Ccb:Swd blending proportion 50:10:40 gave the highest values of MOE and MOR and also had the lowest values of WA and TS. The MOE and MOR values of 3.432 are both higher than the minimum values of 550 N/mm2 and 3 N/mm2 specified for MOE and MOR respectively by the American National Standard Institute, for general-use particle boards. The cement content is inversely proportional to the physical properties and directly proportional to the mechanical properties.


2015 ◽  
Vol 1088 ◽  
pp. 644-647
Author(s):  
Cristiane Inácio de Campos ◽  
Bruno Santos Ferreira ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Juliana Cortez Barbosa ◽  
...  

This research aimed to produce and determine physical and mechanical properties of three-layered particleboard produced with Pinussp. wood particlesand three different times of press, i.e., 3, 5 and 7 minutes. Recommendations of the Brazilian standard ABNT NBR 14810 [1] were adopted to fundament physical and mechanical tests. The properties evaluated were the modulus of rupture (MOR) and modulus of elasticity (MOE) in static bending; internal bond; thickness swelling; water absorption; moisture content and apparent density.The mean values showed, for the physical properties, that all the panels manufactured achievedthe requirements of theBrazilian standard, and for mechanical properties, only the panelsmanufacturedwith 7minutesofpressing timemet therequirements. From the Tukey test results, timesof the pressingcycleinfluencedsignificantlyin allinvestigatedphysical and mechanicalproperties, showed better results the panels madewithseven minutesof the pressingcycle, implyingthat the time ofseven minutesof the pressingcycle is thebest among theinvestigatedperiodsin the manufactureofparticleboard.


2016 ◽  
Vol 8 (2) ◽  
pp. 43-52 ◽  
Author(s):  
Djoko Purwanto

Oil palm empty fruit bunches (OPEFB) fiber were industrial waste that has not been widely used by the community, only stacked and cause odors that interfere with the surrounding environment. This research studied the utilization of OPEFB fiber for cement board products using cement as resin and CaCl2 as accelerator. Laboratory scale cement board made from OPEFB fiber were mixed with cement, and CaCl2. The composition of fiber and cement were 1:1, 1:1.5, 1:2, and CaCl2 variations were 0%, 1% and 3%. A mixture of fibers, cement and CaCl2 was compressed at the pressure of 4 ton for 24 hours. The cement boards were tested for physical and mechanical properties according to JIS A 5417-1992, and the results were compared to the requirements of the cement board JIS A 5417-1992. Cement board made from fiber and cement composition 1:1.5 and CaCl2 content 3% produced moisture content, thickness swelling, water absorption, density, modulus of rupture/MOR, modulus of elasticity/MOE and screw withdrawal strength that met the requirement of JIS A 5417-1992. The composition of fiber and cement and the variations of CaCl2 content produced significant effect on water content, water absorption, thickness swelling, modulus of rupture/MOR, modulus of elasticity/MOE and screw withdrawal strength on cement boards.Keywords : oil palm empty fruit bunches fiber, cement boards, physical and mechanical properties


PERENNIAL ◽  
2008 ◽  
Vol 4 (1) ◽  
pp. 6
Author(s):  
Apri Heri Iswanto ◽  
Zahrial Coto ◽  
Kurniawansyah Effendy

The objective of this research is to research the effect of particle soaking to physical and mechanical properties particleboard that resulted. The best result of particleboard is particleboard with treatment of hot water soaking. From this result obtained average of physical properties of particleboard (i.e. density, moisture content, water absorption, and thickness swelling) are 0.7 g/cm3; 9.58%; 52.27%; 10.05%. While the result average of mechanical properties of particleboard (i.e. Modulus of Rupture, Modulus of Elasticity, Internal Bond and Screw Holding Power) are 118.79 kg/cm2; 8.909 kg/cm2; 1.85 kg/cm2; 28.40 kg. Key words: Soaking, bagasse, particleboard, physical and mechanical properties References


Sign in / Sign up

Export Citation Format

Share Document