Effects of Silcon on Growth and Cadmium Accumulation by Flue-Cured Tobacco

2015 ◽  
Vol 1092-1093 ◽  
pp. 608-612
Author(s):  
Yan Fang Ren ◽  
Jun Yu He ◽  
Dong Liu ◽  
Yan Chao Zhang ◽  
Hui Qing Chang

Tobacco (Nicotiana tabacumL.) is able to accumulate cadmium in leaves and reduction of cadmium content can reduce health hazards to smokers. In the present study, the influence of silicon on the growth, yield and the content and distribution of cadmium (Cd) in flue-cured tobacco plants in the presence of cadmium was investigated by pot experiment. The results showed that Cd reduced the growth of both shoots and roots. Application of Si significantly increased the dry weight of roots and shoots in flue-cured tobacco grown in Cd contaminated soils, but not the largest leaf area. Si reduced the Cd concentration and accumulation in the root, stem and leaf of flue-cured tobacco compared with Cd alone. Si restricted the transport of Cd from roots to shoots. These results demonstrate that 1 and 2 g/kg Si could enhance Cd tolerance in flue-cured tobacco and decrease of Cd accumulation in plant and Cd translocation to shoots.

2016 ◽  
Vol 62 (2) ◽  
pp. 72-79 ◽  
Author(s):  
Beáta Piršelová ◽  
Roman Kuna ◽  
Peter Lukáč ◽  
Michaela Havrlentová

Abstract The influence of different concentrations of cadmium (Cd) ions (50 and 100 mg/kg soil) on growth, photosynthetic pigment content, Cd, and iron accumulation in faba bean (Vicia faba L. cv. Aštar) was studied under laboratory conditions. No significant changes were observed in the growth parameters of shoots (length, fresh, and dry weight). Both tested Cd doses resulted in decrease in root fresh weight by 31.7% and 28.68% and in dry weight by 32.2% and 33.33%, respectively. Increased accumulation of Cd was observed in roots (125- and 173-fold higher than in control) and shoots (125- and 150-fold higher than in control) as a result of applied doses of Cd. Increased accumulation of iron was detected in roots (1.45- and 1.69-fold higher than in control). Decrease in the content of chlorophyll a (by 25.52 and 24.83%, respectively) and chlorophyll b (by 6.90%) after application of Cd 100 as well as decrease in carotenoids (by 40.39 and 38.36%, respectively) was detected. Weak translocation of Cd from roots to shoots pointed to low phytoremediation potential of the tested bean variety in contaminated soil. However, the high tolerance of this cultivar, its relative fast growth, as well as priority of Cd accumulation in roots presume this plant species for phytostabilisation and revegetation of the Cd-contaminated soils.


2009 ◽  
Vol 54 (No. 1) ◽  
pp. 1-9 ◽  
Author(s):  
J. Száková ◽  
V. Zídek ◽  
D. Miholová

The influence of elevated cadmium content in diet on the content of this element in liver, kidney and testes of 68 male rats was studied in dependence on the chemical form of applied cadmium (as inorganic salt – CdCl<sub>2</sub> and organically bound in yeast cells); the influence of elevated arsenic content (as NaAsO<sub>2</sub>) in diet on its content in the same organs was also investigated. The interactions between arsenic and cadmium in the above-mentioned organs were studied. The addition of cadmium to the diet of rats significantly (<I>P</I> < 0.05) increased cadmium content in several organs. The addition of yeast containing the natural level of Cd increased the content of cadmium in liver and kidney of experimental animals significantly (<I>P</I> < 0.05). A significantly (<I>P</I> < 0.05) increased cadmium accumulation in organs was observed after the addition of Cd as CdCl<sub>2</sub>, compared with the addition of Cd as organically bound Cd in yeast cells. At the same time, the addition of yeasts containing the natural level of Cd decreased the Cd accumulation applied as CdCl2 in the examined organs. The addition of sodium arsenite to the diet of rats led to a significantly (<I>P</I> < 0.05) increased arsenic content in all the analyzed organs. The addition of yeasts to the diet increased arsenic content in liver and at the same time suppressed its content in kidneys of experimental animals. The interaction between arsenic and cadmium applied simultaneously was evident. The addition of As to the diet decreased the accumulation of Cd in kidney and increased its accumulation in testes. The addition of Cd to the diet increased arsenic content in liver and kidney and decreased its content in testes.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 904 ◽  
Author(s):  
Zhong-Wei Zhang ◽  
Yi-Ying Dong ◽  
Ling-Yang Feng ◽  
Zong-Lin Deng ◽  
Qiang Xu ◽  
...  

Oilseed rape (Brassica napus) is a Cadmium (Cd) hyperaccumulator. However, high-level Cd at the early seedling stage seriously arrests the growth of rape, which limits its applications. Brassica juncea had higher Cd accumulation capacity, but its biomass was lower, also limiting its applications. Previous studies have confirmed that Selenium (Se) can alleviate Cd toxicity. However, the regulatory mechanism of Se in different valence states of Cd accumulation was unclear. In this study, we investigated the ameliorating effects of three Se valence states, Na2SeO4 [Se(VI)], Na2SeO3 [Se(IV)] and Se-Met [Se(II)], to Cd toxicity by physiological and biochemical approaches in hydroponically-cultured Brassica juncea and Brassica napus seedlings. Although Se treatments slightly inhibited seedling Cd concentration, it tripled or quadrupled the Cd accumulation level per plant, because dry weight increased about four times more with Se and Cd application than with Cd treatment alone. Among the different valence states of Se, Se(II) had the most marked effect on reducing Cd toxicity as evidenced by decreased growth inhibition and Cd content. The application of Se(II) was effective in reducing Cd-induced reactive oxygen species accumulation, and promoted the antioxidant enzyme activity and photosynthesis of both Brassica species. In addition, Se(II) treatment increased the concentrations of Cd in the cell wall and soluble fractions, but the Cd concentration in the organelle part was reduced.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Li Tang ◽  
Jiayu Dong ◽  
Longtao Tan ◽  
Zhongying Ji ◽  
Yaokui Li ◽  
...  

AbstractCadmium (Cd)-contaminated rice is a serious issue affecting food safety. Understanding the molecular regulatory mechanisms of Cd accumulation in rice grains is crucial to minimizing Cd concentrations in grains. We identified a member of the low-affinity cation transporter family, OsLCT2 in rice. It was a membrane protein. OsLCT2 was expressed in all tissues of the elongation and maturation zones in roots, with the strongest expression in pericycle and stele cells adjacent to the xylem. When grown in Cd-contaminated paddy soils, rice plants overexpressing OsLCT2 significantly reduced Cd concentrations in the straw and grains. Hydroponic experiment demonstrated its overexpression decreased the rate of Cd translocation from roots to shoots, and reduced Cd concentrations in xylem sap and in shoots of rice. Moreover, its overexpression increased Zn concentrations in roots by up-regulating the expression of OsZIP9, a gene responsible for Zn uptake. Overexpression of OsLCT2 reduces Cd accumulation in rice shoots and grains by limiting the amounts of Cd loaded into the xylem and restricting Cd translocation from roots to shoots of rice. Thus, OsLCT2 is a promising genetic resource to be engineered to reduce Cd accumulation in rice grains.


2021 ◽  
Vol 29 (2) ◽  
pp. 88-93
Author(s):  
О. A. Havryliuk ◽  
V. M. Hovorukha ◽  
A. V. Sachko ◽  
G. V. Gladka ◽  
I. O. Bida ◽  
...  

Contamination of soils with heavy metals leads to reduction of soil fertility, destruction of natural ecosystems and detrimental effects on the health of society by increasing content of metals in the food chains from microorganisms to plants, animals and humans. Bioremediation is one of the most promising and cost-effective methods of cleaning soils polluted with toxic metals. According to current researchers, microorganisms and plants have the genetic potential to remove toxic metals from contaminated sites. The method of thermodynamic prediction was used to theoretically substantiate the mechanisms of interaction of soil microorganisms and plants with heavy metals. According to the our prediction, exometabolite chelators of anaerobic microorganisms may increase the mobility of metals and thereby contribute to the active transport of metals and their accumulation in plants. Plants of Nicotiana tabacum L. of Djubek cultivar were used as plant material for the current investigation. The examined toxicants were heavy metals, namely cobalt (II), nickel (II), chromium (VI), copper (II) and cadmium (II). The aqueous solutions of metal salts were added to the boxes after two months of plants growing to the final super-high concentration – 500 mg/kg of absolutely dry weight of soil. Quantitative assessments of copper and chromium-resistant microorganisms were made by cultivation on agar nutrient medium NA with a gradient of Cu(II) and Cr(VI). The concentration of metals in soil and plant material (leaves, stems and roots) was determined by atomic absorption method. The study revealed that heavy metals inhibited the growth of the examined tobacco plants. This was expressed by the necrosis of plant tissues and, ultimately, their complete death. Despite this, all investigated heavy metals were accumulated in plant tissues during 3–7 days before death of plants. The uptake of metals was observed in all parts of plants – leaves, stems and roots. The highest concentrations of Co(II), Ni(II), Cd(II), Cr(VI) were found in the leaves, Cu(II) – in the roots. The results show that the bioremoval efficiency of the investigated metals ranged 0.60–3.65%. Given the super-high initial concentration of each of the metals (500 mg/kg), the determined removal efficiency was also high. Cadmium was the most toxic to plants. Thus, the basic points of the thermodynamic prognosis of the possibility of accumulation of heavy metals by phytomicrobial consortium were experimentally confirmed on the example of N. tabacum plants and metal-resistant microorganisms. The study demonstrated that despite the high initial metals concentration, rate of damage and death of plants, metals are accumulated inplant tissues in extremely hight concentrations. Soil microorganisms were observed to have high adaptation potencial to Cu(II) and Cr(VI). In anaerobic conditions, microorganisms presumably mobilize heavy metals, which later are absorbed by plants. The obtained results are the basis for the development of environmental biotechnologies for cleaning contaminated soils from heavy metal compounds.


2007 ◽  
Vol 87 (3) ◽  
pp. 499-502 ◽  
Author(s):  
Md Abul Kashem ◽  
Bal Ram Singh ◽  
Hiroshi Kubota ◽  
Reiko Sugawara Nagashima ◽  
Nobuyuki Kitajima ◽  
...  

Arabidopsis halleri ssp. gemmifera is a plant recently found in the heavy metal contaminated areas of Japan, and it contained a significant amount of Cd in its shoots. In this study, the potential of A. halleri ssp. gemmifera to accumulate Cd was investigated using hydroponics. The plants were grown for 21 d after Cd (control, 10, 100 and 400 µM) treatment. No reduction in shoot and root dry weight (DW) was observed when plants were grown in a nutrient solution containing up to 400 µM Cd. Cadmium concentrations in the plant parts increased significantly with Cd application rates, and reached a maximum of about 5641, 6643 and 15 967 µg g-1 in the leaves, stems and roots, respectively, at 400 µM Cd in the nutrient solution. Similarly, maximum Cd accumulation (dry weight × concentration) of 17.7 and 10.8 mg plant-1 in the shoots and roots, respectively, was obtained at 400 µM Cd. The ratio of shoot Cd/root Cd decreased with increasing rates of Cd supply from 1.8 at 10 µ M to 0.40 at 400 µM. Cadmium translocation from root to shoot ranged from 61 to 89% of the total Cd, showing a very high mobility of Cd in plants. The outcomes of this study and the field and greenhouse data previously reported confirm that this plant is a suitable candidate for the phytoremediation of Cd-contaminated soils. Furthermore, the concentration of Cd measured in the shoot indicates that A. halleri ssp. gemmifera could be considered a new potential Cd hyperaccumulator plant species. Key words: Cadmium, hyperaccumulator, hydroponics, phytoremediation, tolerance


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Xin Wang ◽  
Qian Liu ◽  
Yunbao Wan ◽  
Chenxi Cao ◽  
Jiuyuan Bai ◽  
...  

AbstractThe farmland polluted by cadmium is increasing drastically, which seriously threatened agricultural production and food safety. Nowadays, efficient and convenient way to solve the problem is urgently needed. In this experiment, a particular compound passivator DHJ-C was applied for soil remediation by pot experiment and the effect on both soil and plant was evaluated. The DHJ-C reduced the toxicity of Cd on soil enzyme activity and growth inhibition on Brassica napus. The soil urease and sucrase activity were significantly increased. The dry weight of mature oilseed rape increased by 14.6–36.0% and the yield of seeds increased by 14.1–52% per plant, which suggested that the passivator effectively reduced the detrimental effects on rape. Similarly, the results of physiology and biochemistry also indicated that DHJ-C can distinctly alleviate the inhibitory effect of Cd on plant growth. Such as the MDA content in plant was reduced by 52.1% in 10 mg/kg Cd treatment. Compared with control, Cd accumulation in seedling stage and mature period was significantly reduced as the concentration of Cd in aboveground part even decreased by 18.4 and 32.0% respectively. Overall, DHJ-C hold sufficient ability to be applied as an excellent passivator to reduce Cd toxicity in contaminated soil and significantly increase the yield of rapeseed.


1991 ◽  
Vol 116 (3) ◽  
pp. 454-459 ◽  
Author(s):  
Richard P. Marini ◽  
Donald Sowers

Twenty-eight-year-old `Starkrimson Delicious' and 10-year-old `Fullred Delicious' apple (Malus domestics Borkh.) trees were spur-pruned in 1986 and 1987 and/or treated with 500 mg BA + GA4+7/liter in 1986 in an attempt to improve spur growth and increase fruit weight. All treatment combinations generally failed to improve yield or fruit size. BA + GA4+7 reduced yield and fruit weight and increased the number of pygmy fruit in 1986, but had little effect on fruiting or vegetative growth for 3 years after treatment. Spur-pruning reduced spur density in 1986 and 1987 and increased yield, but not fruit weight, in 1987. Although spur-pruning improved spur length, spur bud diameter, leaf area per spur, and leaf dry weight per spur, fruit weight was not improved. Chemical names used: N-(phenylmethyl)-1H -purine-6-amine [benzyladenine (BA)]; gibberellin (GA4+7).


2020 ◽  
Vol 40 (8) ◽  
pp. 1126-1142 ◽  
Author(s):  
Xiaojiao Han ◽  
Yunxing Zhang ◽  
Miao Yu ◽  
Jin Zhang ◽  
Dong Xu ◽  
...  

Abstract Salix matsudana Koidz is a low cadmium (Cd)-accumulating willow, whereas its cultivated variety, Salix matsudana var. matsudana f. umbraculifera Rehd., is a high Cd-accumulating and tolerant willow (HCW). The physiological and molecular mechanisms underlying differential Cd accumulation and tolerance in the two Salix species are poorly understood. Here, we confirmed that the differential Cd translocation capacity from roots to the shoots leads to the differential Cd accumulation in their aboveground parts between these two willow genotypes. Cadmium accumulation happens preferentially in the transport pathway, and Cd is mainly located in the vacuolar, cell wall and intercellular space in HCW bark by cadmium location analysis at tissue and subcellular levels. Comparative transcriptome analysis revealed that higher expressions of several metal transporter genes (ATP-binding cassette transporters, K+ transporters/channels, yellow stripe-like proteins, zinc-regulated transporter/iron-regulated transporter-like proteins, etc.) are involved in root uptake and translocation capacity in HCW; meanwhile, ascorbate–glutathione metabolic pathways play essential roles in Cd detoxification and higher tolerance of the Cd-accumulator HCW. These results lay the foundation for further understanding the molecular mechanisms of Cd accumulation in woody plants and provide new insights into molecular-assisted-screening woody plant varieties for phytoremediation.


2020 ◽  
Vol 66 (No. 6) ◽  
pp. 257-263
Author(s):  
Jakub Pastuszak ◽  
Przemysław Kopeć ◽  
Agnieszka Płażek ◽  
Krzysztof Gondek ◽  
Anna Szczerba ◽  
...  

A serious problem in durum wheat cultivation is its genetic capacity to accumulate cadmium (Cd) in the grain. The aim of the study was to verify if the degree of durum wheat resistance to NaCl salinity is related to its tolerance to Cd contamination, and to search for physiological markers of Cd accumulation in the grain. The experiment involved a salt sensitive cv. Tamaroi and a salt resistant line BC<sub>5</sub>Nax<sub>2</sub>, as well as a moderately salt tolerant line SMH87. The plants grew in the soil supplemented with 3 mg or 5 mg Cd/kg dry weight. The plant response to Cd was evaluated based on chlorophyll fluorescence (ChlF) and Cd content in the grains. Toxic effects of both Cd levels on photosynthetic performance index were the strongest in salt sensitive cv. Tamaroi, which showed the highest Cd content in the seeds. We therefore assumed that tolerance to salinity and Cd has a common physiological background, and that ChlF parameters may be used as the markers of Cd tolerance.


Sign in / Sign up

Export Citation Format

Share Document