Influence of Thermo-Mechanical Treatments on Structure and Mechanical Properties of High-Mn Steel

2015 ◽  
Vol 1127 ◽  
pp. 113-119 ◽  
Author(s):  
Leszek Adam Dobrzański ◽  
Wojciech Borek ◽  
Janusz Mazurkiewicz

The aim of this paper is to determine the high-manganese austenite propensity to twinning induced by the cold working and its effect on structure and mechanical properties, and especially the strain energy per unit volume of new-developed high-manganese Fe – Mn – (Al, Si) investigated steel, containing about 24,5 % of manganese, 1% of silicon, 3 % of aluminium and microadditions Nb and Ti with various structures after their heat- and thermo-mechanical treatments. The new-developed high-manganese Fe – Mn – (Al, Si) steel provide an extensive potential for automotive industries through exhibiting the twinning induced plasticity (TWIP) mechanisms. TWIP steel not only show excellent strength, but also have excellent formability due to twinning, thereby leading to excellent combination of strength, ductility, and formability over conventional dual phase steels or transformation induced plasticity (TRIP) steels. Results obtained for high-manganese austenitic steel with the properly formed structure and properties in the thermo-mechanical processes indicate the possibility and purposefulness of their employment for constructional elements of vehicles, especially of the passenger cars to take advantage of the significant growth of their strain energy per unit volume which guarantee reserve of plasticity in the zones of controlled energy absorption during possible collision resulting from activation of twinning induced by the cold working as the fracture counteraction factor, which may result in significant growth of the passive safety of these vehicles' passengers.

2011 ◽  
Vol 148-149 ◽  
pp. 1085-1088
Author(s):  
Gholam Reza Razavi

TWIP steels are high manganese steel (Mn: 17% - 35%) which are used for shaping car bodies. The structure of this kind of steels remains austenite even in room temperature. Due to low SFE (Stacking Fault Energy) twinning of grains is governing reformation mechanism in this kind of steels which strengthen TWIP steel. Regarding heat treatment influences on mechanical properties of TWIP steels, in this paper we discuss twinning phenomenon resulting from this kind of treatment. For this, following casting and hot rolling processes, we anneal the steel at 1100°C and different time cycles and study its microstructure using light microscope. The results showed that with decreasing grain size the number of twin annealing added And four types of annealing twin in the microstructure, in the end they all become one twin and then turn into grain.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 523
Author(s):  
Baoyu Xu ◽  
Peng Chen ◽  
Zhengxian Li ◽  
Di Wu ◽  
Guodong Wang ◽  
...  

The δ-TRIP steel has attracted a lot of attention for its potential application in automotive components, owing to the low density, good combination of strength, and ductility. As the difficulty in yield strength further increasement is caused by large fraction ferrite, the work hardening ability was enhanced by optimizing the manganese (Mn)-content in this study. Three δ-TRIP steels with different manganese (Mn)-content were designed to explore the significant effect of Mn content on the work hardening behavior in order to develop high strength steel suitable for the industrial continuous annealing process. The detailed effect of Mn on microstructure evolution and deformation behavior was studied by scanning electron microscope (SEM), interrupted tensile tests, X-ray diffraction (XRD), and in-situ electron backscattered diffraction (EBSD). The study suggested that 2 Mn steel has the lowest degree of bainitic transformation, as a result of fine grain size of prior austenite. The large TRIP effect and dislocation strengthening improve the work hardening rate, resulting in 2 Mn steel exhibiting comparable mechanical properties with the QP980 steels. The retained austenite in 1.5 Mn steel progressively transformed into martensite and sustained the strain to a high strain value of 0.40, showing a good strength-ductility balance.


2021 ◽  
Vol 297 ◽  
pp. 01044
Author(s):  
Omar Ben lenda ◽  
Sara Benmaziane ◽  
Ahmed Tara ◽  
Elmadani Saad

The influence of temperature on the structural and mechanical properties of the (0.9 C - 13.95 Mn) steel was investigated in this work. The high-manganese steel has underwent aging treatments at temperatures 700, 750, 800 and 850 °C for different times. The experimental techniques used are hardness test, scanning electron microscopy, optical microscopy and X-ray diffraction. The mechanical behavior and microstructural evolution of the high-manganese steel during aging are almost the same. The aging of the high-manganese steel was characterized by a rapid hardening while the overaging by a slow softening. In aging, the dispersion of fine M7C3 carbides in the austenite led to an increase in hardness. In overaging, the softening was caused by the coarsening of the M7C3 carbides.


Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract CARLSON ALLOYS C600 AND C600 ESR have excellent mechanical properties from sub-zero to elevated temperatures with excellent resistance to oxidation at high temperatures. It is a solid-solution alloy that can be hardened only by cold working. High strength at temperature is combined with good workability. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Ni-470. Producer or source: G.O. Carlson Inc.


Alloy Digest ◽  
1997 ◽  
Vol 46 (10) ◽  

Abstract Allegheny Stainless Type 205 is a chromium-manganese nitrogen austenitic high strength stainless steel that maintains its low magnetic permeability even after large amounts of cold working. Annealed Type 205 has higher mechanical properties than any of the conventional austenitic steels-and for any given strength level, the ductility of Type 205 is comparable to that of Type 301. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SS-640. Producer or source: Allegheny Ludlum Corporation. Originally published March 1996, revised October 1997.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Tiebao Wang ◽  
Chunxiang Cui ◽  
Kuo Jia ◽  
Lichen Zhao

The nanostructured Fe-V-Nb master alloy was prepared in vacuum rapid quenching furnace and then was added in the steel melts as modificators before casting. Next, the effects of the nanostructured Fe-V-Nb modificators on the microstructure and mechanical properties of the steel were studied. The results show that the grain size of the steel has been effectively refined, which is mainly because the dispersed nanoscale particles can produce more nucleation sites during the solidification of the liquid steel. Tensile properties and fracture morphology reveal that the yield strength and toughness of the steel modified by nanostructured Fe-V-Nb modificators are better than that of the microalloyed steel. TEM analysis shows that vanadium and niobium in the modificators exist in the form of (V, Nb) C which effectively increases the nucleation rate and leads to better mechanical properties of the steel.


2016 ◽  
Vol 78 ◽  
pp. 01081
Author(s):  
A.K. Muzafar ◽  
M.M. Rashidi ◽  
I. Mahadzir ◽  
Z. Shayfull

Sign in / Sign up

Export Citation Format

Share Document