Numerical Simulation on Dynamic Fracture of Glass Plate Fitted with Polymeric Film

2021 ◽  
Vol 1166 ◽  
pp. 57-64
Author(s):  
Tomohisa Kojima ◽  
Masahiro Suzuki ◽  
Mitsuo Notomi

The impact resistance improvement is important for window glass to protect people from injury. Although it has been proved that the impact resistance of a glass plate can be improved easily by fitting a thin polymeric film, its mechanism has not been clarified yet. The purpose of this study is to clarify the reinforcing mechanism of the impact resistance of a glass plate by fitting a polymeric film. To clarify it, a numerical simulation model was built using ANSYS Autodyn to simulate the dynamic fracture of a glass plate fitted with a polymeric film. The simulation model and results were examined by comparing them to the experimental result in the previous study. The Johnson-Holmquist (JH2) damage model was used for the constitutive law of the glass plate. A polymeric film with 0.2 mm thickness (3% with the glass plate) was modeled at the non-impact surface of the glass plate. The nodes of the glass plate at the interface with the film connected the nodes of the film by perfect bonding. By comparing the simulation results to the experiment, it was indicated the importance of modeling the remaining fragments of the glass plate and the adhesive layer of the film in simulating the dynamic fracture of the glass plate fitted with polymeric film.

2013 ◽  
Vol 385-386 ◽  
pp. 400-403
Author(s):  
Fu Yuan Li ◽  
Yu Wen Zhang ◽  
Xi Zhao Du

In the experiment of cavitation, the same water tunnel with different model size will get cavity shape that is different from the result of the empirical formula under the same cavitation number. In this article, we studied the impact of wall effect on natural cavity shape and the resistance of cavitator. We get the cavity shape and resistance of cavitator under different diameter ratio. We also get the law how cavity shape and resistance of cavitator change with the diameter ratio. The results provide a reference for experiment in water tunnel and the simulation model.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 890
Author(s):  
Huiling Zhao ◽  
Xiangqing Kong ◽  
Ying Fu ◽  
Yihan Gu ◽  
Xuezhi Wang

To precisely evaluate the retrofitting effectiveness of Carbon Fiber Reinforced Plastic (CFRP) sheets on the impact response of reinforced concrete (RC) T-beams, a non-linear finite element model was developed to simulate the structural response of T-beams with CFRP under impact loads. The numerical model was firstly verified by comparing the numerical simulation results with the experimental data, i.e., impact force, reaction force, and mid-span displacement. The strengthening effect of CFRP was analyzed from the section damage evaluation. Then the impact force, mid-span displacement, and failure mode of CFRP-strengthened RC T-beams were studied in comparison with those of un-strengthened T-beams. In addition, the influence of the impact resistance of T-beams strengthened with FRP was investigated in terms of CFRP strengthening mode, CFRP strengthening sizes, CFRP layers and FRP material types. The numerical simulation results indicate that the overall stiffness of the T-beams was improved significantly due to external CFRP strips. Compared with the un-strengthened beam, the maximum mid-span displacement of the CFRP-strengthened beam was reduced by 7.9%. Additionally, the sectional damage factors of the whole span of the CFRP-strengthened beam were reduced to less than 0.3, indicating that the impact resistance of the T-beams was effectively enhanced.


Author(s):  
І.О. Ушакова

Computer modeling is a method for solving the problems of analysis or synthesis of a complex system based on the use of its computer model. Simulation, as a component of computer modeling, allows you to construct most of the possible states of the analyzed system. In this way it allows to correct the processes of assembling machines in a minimum time and with minimal costs, to foresee possible risks and to avoid unreasonable decisions regarding the organization of processes, to reduce material costs. Simulation gives the best results for modeling uncertain or probabilistic systems. Simulation, as a component of computer modeling, gives the best results for modeling systems with uncertainty or with a probabilistic nature. Mathematically calculating all possible variants of the system’s behavior is a laborious task, and using average values in the calculations gives inaccurate results. For assembly production systems, simulation modeling is used to select the optimal production organization parameters. The aim of this work is to build a computer simulation model that allows you to evaluate the impact of production factors (number of employees, operating parameters and type of assembly process) on the assembly process and substantiate the effectiveness of the model. The current assembly process of the machine was considered for modeling. The assembly process includes: two streams of verification, synchronization of request from these two streams, and a machine collection stream. The vacated line starts servicing the application that entered the system earlier than others. Such a discipline is called “earlier entered - earlier served” (FIFO - First In - First Out).s from flows, and a machine assembly flow. An optimization experiment was carried out after the construction and verification of the simulation model. The maximum value of profit was chosen as the objective function. Iterations were performed during an optimization experiment. The optimal number of employees was selected for two inspection flows and a machine assembly stream in the assembly shop. The first experimental result showed the effectiveness of the request flow synchronization method. The following optimization experiment showed the relationship between the number of workers in certain threads of the assembly process and profit. The results of using agent-based models for simulation can be used to optimize assembly processes.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2014 ◽  
Vol 134 (7) ◽  
pp. 604-613 ◽  
Author(s):  
Toshiya Ohtaka ◽  
Tomo Tadokoro ◽  
Masashi Kotari ◽  
Tadashi Amakawa

Sign in / Sign up

Export Citation Format

Share Document