Research on Characteristics of Deposition Precipitation Process in Production of Low Carbon Aluminum-Killed Steel in FTSR Technology

2010 ◽  
Vol 139-141 ◽  
pp. 294-298
Author(s):  
Yun Li Feng ◽  
Meng Song ◽  
Jing Bo Yang

Precipitation characteristics of second phase in low-carbon steel produced by FTSR technology have been researched by TEM and EDS in this article. And preliminary research of precipitation conditions of second phase particles in thermodynamics and dynamics have been took. The results indicate that: there’re second phase particles precipitated dispersively in hot rolled low-carbon steels by FTSR technology. These particles mainly contain particles of Al2O3, MnS and AlN, and the precipitate size is about tens to hundreds of nano. Thermodynamical analysis declares that most of the Al2O3 and all of the MnS, AlN particles are precipitated in solid state. That’s why the precipitation process is slowed down by the diffusion velocity of the elements in solid, and thinner particles are precipitated while the material is in solid state than in liquid state. Different from the traditional plate rolling production of Al-killed steel, the precipitation of AlN particles are mainly controlled by the continuous casting process in thin slab casting and rolling process, but almost no precipitation of AlN particles in the rolling process.

2014 ◽  
Vol 886 ◽  
pp. 128-131
Author(s):  
Zhuo Fei Song ◽  
Shan Shan Feng ◽  
Yun Li Feng

Precipitation characteristics of second phase in HSLC steel produced by FTSR technology have been researched by TEM and EDS in this article. And preliminary research of precipitation conditions of second phase particles in thermodynamics and dynamics have been took. The results indicate that: there’re second phase particles precipitated dispersively in hot rolled HSLC steels by FTSR technology. These particles mainly contain particles of Al2O3、MnS and AlN. Thermo dynamical analysis declares that most of the Al2O3 and all of the MnS、 AlN particles are precipitated in solid state. That’s why the precipitation process is slowed down by the diffusion velocity of the elements in solid, and thinner particles are precipitated while the material is in solid state than in liquid state.


Author(s):  
Laura G. Castruita-Avila ◽  
Francisco A. García-Pastor ◽  
Manuel de J. Castro-Roman ◽  
Jesus Emilio Camporredondo-Saucedo ◽  
Fabián Equihua-Guillen ◽  
...  

In this paper were analyzed the effects of double reduction and annealing during rolling process on texture evolution in an ultrathin sheet of low carbon steel. Experimental samples were obtained from each process stage. EBSD technique and correlated tools as orientation density functions and pole figures were used to analyze the microstructural changes and the texture. Results show that {111} recrystallized grains were formed during process, reducing dramatically gamma-fibre texture intensity and generating an adequate finished product for deep die stamping.


2019 ◽  
Vol 944 ◽  
pp. 329-336
Author(s):  
Fan Wang ◽  
Peng Tian ◽  
Yong Lin Kang ◽  
Jing Tao Zhu ◽  
Zhe Qin ◽  
...  

In this paper, the Steel Plate Heat Commercial (SPHC) that produced by RiZhao Steel’s Endless Strip Production (ESP) line was taken as the research object. The phase transition points under different cooling rates were measured by DIL805A thermal expansion instrument and then the static Continuous Cooling Transformation (CCT) curve was plotted. The rolling process of ferritic zone was simulated by Gleeble-3800 hot compression tester. The microstructure evolution of SPHC under different temperatures and different strain rates were analyzed, and the hot compression deformation behavior was studied. The experimental result has shown that when the cooling rate of low carbon steel is lower than 15 °C·s-1, the microstructure is mainly composed of ferrite and a small amount of pearlite and tertiary cementite. The experimental material showed a mixed crystal phenomenon when the deformation reached 50% at 780 °C. The fitting calculation has shown that the deformation activation energy of the ferrite zone rolling is 112 kJ·mol-1, and the relationship between the deformation energy storage and the temperature compensation strain rate factor was established. Subsequently, the above experimental results were verified in the RiZhao Steel’s ESP line, which laid the experimental foundation for the use of ferrite rolling technology for endless strip production.


2007 ◽  
Vol 550 ◽  
pp. 595-600 ◽  
Author(s):  
Carlos Capdevila ◽  
Tommy De Cock ◽  
Francisca García Caballero ◽  
Carlos García de Andrés

In this work the prominent influence of Particle Stimulated Nucleation (PSN) on the overall process of nucleation and subsequent grain growth is discussed and a global recrystallisation kinetics model is proposed. This model accounts for the effect of the most relevant industrial parameters, such as cold reduction and annealing temperature. Moreover, not only the role of the cementite content, which is function of the nominal carbon content, is included in the model, but also the morphology of the second phase particles. Experimental evidence is given to ascertain the accuracy of the theoretical predictions.


2005 ◽  
Vol 475-479 ◽  
pp. 101-104
Author(s):  
L.N. Zhang ◽  
X. Zhang ◽  
Y. Ma ◽  
D.L. Liu

Plain low carbon steel produced by compact strip production (CSP) process was analyzed using TEM, EELS and XEDS. Nano-sized oxides and sulfides were observed in the steel. The nano-oxides are mainly ferrospinel of <20nm in size, and the nano-sulfides are MnS and FeS particles with size of 20-100 nm. They distributed both in grains and at grain boundaries. These nano precipitates could form in cast slab before heavy deformation by rolling process. It is proposed that besides the grain refinement, the nano-pricipitation plays an important role in yield strength enhancement. This mechanism may provide a new approach to strengthen plain low carbon steels.


2017 ◽  
Vol 740 ◽  
pp. 93-99
Author(s):  
Muhammad Hafizuddin Jumadin ◽  
Bulan Abdullah ◽  
Muhammad Hussain Ismail ◽  
Siti Khadijah Alias ◽  
Samsiah Ahmad

Increase of soaking time contributed to the effectiveness of case depth formation, hardness properties and carbon content of carburized steel. This paper investigates the effect of different soaking time (7-9 hours) using powder and paste compound to the carburized steel. Low carbon steels were carburized using powder and paste compound for 7, 8 and 9 hours at temperature 1000°C. The transformation of microstructure and formation carbon rich layer was observed under microscope. The microhardness profiles were analyzed to investigate the length of case depth produced after the carburizing process. The increment of carbon content was considered to find the correlation between types of carburizing compound with time. Results shows that the longer carburized steel was soaked, the higher potential in formation of carbon rich layer, case depth and carbon content, which led to better hardness properties for carburized low carbon steel. Longer soaking time, 9 hours has a higher dispersion of carbon up to 41%-51% compare to 8 hours and 7 hours. By using paste carburizing, it has more potential of carbon atom to merge the microstructure to transform into cementite (1.53 wt% C) compare to powder (0.97 wt% C), which increases the hardness of carburized steel (13% higher).


1987 ◽  
Vol 109 (3) ◽  
pp. 257-264 ◽  
Author(s):  
E. M. Kopalinsky ◽  
P. L. B. Oxley

Experiments show that the cold working of low carbon steel work materials can improve their machinability by reducing cutting forces and improving surface finish and tool life. The somewhat paradoxical result of reducing cutting forces by cold working a material so that its hardness is increased is explained in this paper by using a machining theory which takes account of the flow stress properties of the work material and can thus allow for the effects of cold working.


Author(s):  
V. Venegas ◽  
O. Herrera ◽  
F. Caleyo ◽  
J. M. Hallen ◽  
T. Baudin

Low-carbon steel specimens, all within API (American Petroleum Institute) specifications, were produced following different thermomechanical paths. After austenization, the samples were rolled and recrystallized. The rolling process was carried out using different reduction-in-thickness degrees and finishing temperatures. The investigated steels showed similar microstructural features but differed considerably in their crystallographic textures and grain boundary distributions. After cathodic hydrogen charging, hydrogen-induced cracking (HIC) was detected in the hot-rolled recrystallized steels, whereas the cold and warm-rolled recrystallized steels proved resistant to this damage. Among the investigated specimens, the HIC-stricken show either the strongest {001}ND texture fiber, the smallest fraction of low-angle grain boundaries, or the weakest {111}ND (γ) texture fiber ({hkl}ND representing crystallographic orientations with {hkl} planes parallel to the steel rolling plane). In contrast, the HIC-resistant steels show the weakest {001}ND texture fiber, the largest fraction of low-angle grain boundaries, and the strongest γ fiber. These results support the hypothesis of this and previous works, that crystallographic texture control, through warm rolling schedules, helps improve pipeline steel resistance to hydrogen-induced cracking.


2009 ◽  
Vol 79-82 ◽  
pp. 143-146
Author(s):  
Jiang Hua Ma ◽  
Dong Ping Zhan ◽  
Zhou Hua Jiang ◽  
Ji Cheng He

In order to understand the effects of deoxidizer such as aluminium, titanium and magnesium on the impact toughness of heat affected zone (HAZ), three low carbon steels deoxidized by Ti-Al, Mg and Ti-Mg were obtained. After smelting, forging, rolling and welding simulation, the effects of Al, Ti and Mg addition on the impact toughness of HAZ in low carbon steel were studied. The inclusion characteristics (size, morphology and chemistry) of samples before welding and the fracture pattern of the specimens after the Charpy-type test were respectively analyzed using optical microscope and scanning electron microscopy (SEM). The following results were found. The density of inclusion in Ti-Mg deoxidized steel is bigger than Ti-Al deoxidized steel. The average diameter is decreased for the former than the latter. The addition of Ti-Mg can enhance the impact toughness of the HAZ after welding simulation. The maximal value of the impact toughness is 66.5J/cm2. The complex particles of MgO-TiOx-SiO2-MnS are most benefit to enhance impact toughness. The improvement of HAZ is attributable to the role of particle pinning and the formation of intergranular ferrite.


2016 ◽  
Vol 369 ◽  
pp. 59-64
Author(s):  
Muhammad Ali Abro ◽  
Dong Bok Lee

A low carbon steel was hot-dip aluminized, and corroded in the N2/0.4%H2S-mixed gas at 650-850°C for 20-50 h in order to find the effect of aluminizing on the high-temperature corrosion of the low carbon steel in the H2S environment. A thin Al topcoat and a thick Al-Fe alloy layer that consisted primarily of Al5Fe2 and some FeAl and Al3Fe formed on the surface after aluminizing. The corrosion rate increased with an increase in temperature. Hot-dip aluminizing increased the corrosion resistance of the carbon steel through forming a thin protective α-Al2O3 scale on the surface. The α-Al2O3 scale was susceptible to spallation. During corrosion, internal voids formed in the Al-Fe alloy layer, where the Al5Fe2, AlFe, and Al3Fe compounds gradually transformed through interdiffusion.


Sign in / Sign up

Export Citation Format

Share Document