Optimal Design of Multi-Edge Cutting Tools for BTA Deep-Hole Machining

1979 ◽  
Vol 101 (2) ◽  
pp. 281-290 ◽  
Author(s):  
V. Latinovic ◽  
R. Blakely ◽  
M. O. M. Osman

The design procedure of optimal multi-edge BTA deep-hole machining tools with unsymmetrically located cutters and preliminary test evidence are presented. Based on a mathematical model of cutting forces in terms of fundamental cutting parameters of the tool, a multivariable, nonlinear objective function was derived and modified to an unconstrained type with bounded decision variables. A numerical, direct search method, accelerated in distance, was selected to minimize the objective function. This procedure insures, on one hand, a predetermined cutting force resultant necessary for tool guidance; on the other hand, it minimizes the variation of cutting edge pressure. A relatively fast computer routine was adapted to provide the optimal tool parameters, which then were used to design cutting head prototypes. Two trepanning heads of three and two cutters were manufactured and tested at production facilities. The test results showed that the cutting force resultant was well predicted in both heads and that they were well guided. Much higher feed rates were possible compared to those achieved with single-edge tools without any loss of hole accuracy straightness or surface finish.

1976 ◽  
Vol 98 (2) ◽  
pp. 474-480 ◽  
Author(s):  
M. O. M. Osman ◽  
V. Latinovic

The design concept and the analysis of multi-edge BTA deep-hole machining tools are presented. The main feature of the design is that the tool cutting edges are unsymmetrically located on the boring head. This provides a stabilizing cutting force resultant necessary for self-guidance of the boring tool. The role of this stabilizing force for machining accurate holes of high length-to-diameter ratio is explained and demonstrated by examples. The principles of tool self-guidance and the range of application for various drilling methods are discussed and examples are given. The results show that, besides achieving higher material removal rate, the use of unsymmetrical multi-edge cutting tools provides similar performance to that of single cutting-edge boring tools in terms of tool stability and bore accuracy. Results also show that by controlling the cutting force resultant at a predetermined value based on feed rate, cutting conditions and tool geometry, a full-film lubrication at wear-pads of the boring head can be insured during the boring operation.


2018 ◽  
Vol 224 ◽  
pp. 01035 ◽  
Author(s):  
Sergey Gorbatyuk ◽  
Valery Kondratenko ◽  
Larisa Sedykh

A large number of parts have deep holes, therefore, rotary cutting tools, which represent relatively long and thin columns are used for holemaking. In this article we analyze the behavior of such tools under the influence of an axial compression load, in our case, the axial cutting force Fp , which differs fundamentally from the compression of short tools. Moreover, experience shows that when the cutting force Fp reaches a certain critical value equal to Fkp , a long straight column becomes unstable.


2011 ◽  
Vol 201-203 ◽  
pp. 2597-2600
Author(s):  
Zhan Feng Liu ◽  
Rui Liang Li

Through the analysis for steel of 4145H drill collar, Research into the various factors of cutting, such as the cutting tool material, cutting-tool angle and cutting parameters, combined with the actual structure of the workpiece and the superlong deep-hole processing method for study. In the test, the machining process is analyzed, especially the process of boring and honing. The test result indicates that the trepanning process is stable and reliable to solve the superlong deep hole (Φ71mm×7500mm) of 4145H drill collar steel processing problems of production if the optimizing cutting method is appropriate and the cutting tools and the cutting parameters are rational.


2010 ◽  
Vol 142 ◽  
pp. 103-106
Author(s):  
Zhi Rong Huang

In this paper, objective function for the highest productivity and longer life of the twist drill is built. Though using Materlab software to draw the curves of the changes of feed, spindle speed, tool life and productivity, a way to find the better cutting parameters of machining the small diameter deep hole on the SUS316 austenitic stainless steel with the twist drill is introduced. The better cutting parameters are obtained.


2011 ◽  
Vol 223 ◽  
pp. 350-358
Author(s):  
Ivandro Bonetti ◽  
Valter Vander Oliveira ◽  
Adriano Fagali Souza

Nowadays there has been noticeable an expressive technological development in the cutting process to machine moulds and dies, through applying new materials, cutting tools and machining strategies. The rough operations depict an important portion in the machining time of these pieces. In front of this scenario, a new milling rough operation in the tool’s axial direction represents a possibility to optimize this machining process so as decreasing the machining time and increasing the material removes rates. A few scientific studies have been carrying out at this thematic, limited to a technical-commercial researches. Therefore this work contributes with the knowledge in this machining process through an experimental trial analyses. In special it studies the cut direction effects during climb and conventional milling in these operations. The result quantifies the cutting parameters influence at the cutting force and error form.


2012 ◽  
Vol 723 ◽  
pp. 317-321
Author(s):  
Yu Wang ◽  
Yuan Sheng Zhai ◽  
Fu Gang Yan ◽  
Xian Li Liu

In this paper, the effect of cutting parameters on cutting force, cutting temperature and surface roughness on cutting force, cutting temperature and surface roughness are experimentally studied in spray cutting GH4169 Ni-base superalloy used carbide cutting tools. The results showed that reasonable choice of cutting parameters can effective reduction of cutting force and cutting temperature, and improve the machining surface roughness. Thus realizing clean production mode.


2009 ◽  
Vol 69-70 ◽  
pp. 510-514 ◽  
Author(s):  
G.L. Zhang ◽  
Qing Long An ◽  
Yun Shan Zhang ◽  
Gang Liu ◽  
Ming Chen

Research has been done on microstructure and machinability of two different free-cutting steels by using cutting tools coated and uncoated at the condition of different cutting parameters. The cutting force, surface quality, chip morphology and tool wear are investigated, which reveal the influence of the size and shape of sulphide inclusion on machinability. The experiment shows that the shape of spindled sulphide inclusion has relatively better machinability than stripped sulphide inclusion and the size of sulphide inclusion also plays some influence.


SINERGI ◽  
2020 ◽  
Vol 24 (3) ◽  
pp. 171
Author(s):  
Sobron Yamin Lubis ◽  
Sofyan Djamil ◽  
Yehezkiel Kurniawan Zebua

In the machining of metal cutting, cutting tools are the main things that must be considered. Using improper cutting parameters can cause damage to the cutting tool. The damage is Built-Up Edge (BUE). The situation is undesirable in the metal cutting process because it can interfere with machining, and the surface roughness value of the workpiece becomes higher. This study aimed to determine the effect of cutting speed on BUE that occurred and the cutting strength caused. Five cutting speed variants are used. Observation of the BUE process is done visually, whereas to determine the size of BUE using a digital microscope. If a cutting tool occurs BUE, then the cutting process is stopped, and measurements are made. This study uses variations in cutting speed consisting of cutting speed 141, 142, 148, 157, 163, and 169 m/min, and depth of cut 0.4 mm. From the results of the study were obtained that the biggest feeding force is at cutting speed 141 m/min at 347 N, and the largest cutting force value is 239 N with the dimension of BUE length: 1.56 mm, width: 1.35 mm, high: 0.56mm.


2011 ◽  
Vol 188 ◽  
pp. 166-170
Author(s):  
Yu Wang ◽  
L.Q. Wang ◽  
Y.F. Li ◽  
Yuan Sheng Zhai ◽  
X.L. Liu

During precise hard cutting, back cutting depth and feed rate are relatively small. Study on the influence of PCBN (Polycrystalline Cubic Boron Nitride) cutting tools edge (chamfer edge or cutting edge radius) on cutting force is important. As the effect of cutting edge on mechanism of shear slip plane is very complicated, so to study the effect of consider cutting edge parameters and cutting parameters by genetic algorithm on cutting force, to build up cutting force model of precise hard cutting. It is feasible to predict cutting force by genetic algorithm with experiment.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2174 ◽  
Author(s):  
Zhaolong Zhu ◽  
Pingxiang Cao ◽  
Xiaolei Guo ◽  
Xiaodong (Alice) Wang ◽  
Fan Zhang ◽  
...  

In order to better provide a theoretical basis for the machining of luxury vinyl tiles, a helical milling experiment was conducted by using diamond cutting tools, and special attention was given to the trends of cutting force and surface roughness in respect to tool geometry and cutting parameters. The results showed that the resultant force was negatively correlated to the helix angle and cutting speed, but positively correlated with the cutting depth. Then, that the surface roughness increased with a decrease of the helix angle and an increase of cutting depth, while as cutting speed raised, the surface roughness first declined and then increased. Thirdly, the cutting depth was shown to have the greatest influence on both cutting force and surface roughness, followed by helix angle and cutting speed. Fourth, the contribution of cutting depth only was significant to cutting force, while both the helix angle and cutting speed had insignificant influence on the cutting force and surface roughness. Finally, the optimal cutting conditions were proposed for industrial production, in which the helix angle, cutting speed and cutting depth were 70°, 2200 m/min and 0.5 mm, respectively.


Sign in / Sign up

Export Citation Format

Share Document