Research on Energy Equation of Lubrication Model on Large-Scale Journal Bearing System

2010 ◽  
Vol 145 ◽  
pp. 139-144
Author(s):  
Jian Mei Wang ◽  
Qing Xue Huang ◽  
Jian Feng Kang ◽  
Yang Fan

To prolong the service life of large-scale journal bearings, the major factors that have influences on bearing performances should be taken into account. By consideration of the variations of viscosity and density with pressure and temperature, a more thorough thermo-hydrodynamic lubrication model was established. With designation of variables with nondimensional parameters, a series of equations were nondimensionied, and the corresponding energy equations at different oil-film layers and boundaries were obtained respectively according to proper difference formats, and then solved by the integration of Finite Difference Method (FDM) with Boundary Element Method (BEM). Calculation results have proved that such complete mathematical model could provide great theoretical guide meaning to improve the lubrication performances and to prolong the service life of contact components of heavy journal bearings.

2010 ◽  
Vol 132 (4) ◽  
Author(s):  
H. C. Garg ◽  
Vijay Kumar ◽  
H. B. Sharda

The effect of viscosity variation due to temperature rise and non-Newtonian behavior of the lubricant on the performance of hole-entry and slot-entry hybrid journal bearings system is the focus of this investigation. The performance characteristics of nonrecessed hybrid journal bearings operating with different flow controlling devices, i.e., constant flow valve, capillary, orifice, and slot restrictors, have been compared. Finite element method has been used to solve the Reynolds equation governing the flow of lubricant in the bearing clearance space along with the restrictor flow equation, energy equation and conduction equation using suitable iterative technique. The non-Newtonian lubricant has been assumed to follow the cubic shear stress law. The results indicate that variation in viscosity due to rise in temperature and non-Newtonian behavior of the lubricant affects the performance of nonrecessed hybrid journal bearing system quite significantly. The results further indicate that bearing performance can be improved by selecting a particular bearing configuration in conjunction with a suitable compensating device.


1988 ◽  
Vol 110 (3) ◽  
pp. 439-447 ◽  
Author(s):  
H. H. Ott ◽  
G. Paradissiadis

The flow field of a hydrodynamic journal bearing is calculated by the iterative solution of the system of Reynolds and energy equations. In the case of reverse flow at the film inlet, the temperature profile there can not be prescribed as a boundary condition but has to be determined from the flow in the film. This is achieved by a separate integration of the energy equation in the reverse flow area. The flow in the cavitation regions is approximated by a theoretical model leading to a form of the energy equation similar to that for pressure regions, thus enabling the integration of the energy equation over the whole film.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Mohammad Miraskari ◽  
Farzad Hemmati ◽  
Mohamed S. Gadala

To determine the bifurcation types in a rotor-bearing system, it is required to find higher order derivatives of the bearing forces with respect to journal velocity and position. As closed-form expressions for journal bearing force are not generally available, Hopf bifurcation studies of rotor-bearing systems have been limited to simple geometries and cavitation models. To solve this problem, an alternative nonlinear coefficient-based method for representing the bearing force is presented in this study. A flexible rotor-bearing system is presented for which bearing force is modeled with linear and nonlinear dynamic coefficients. The proposed nonlinear coefficient-based model was found to be successful in predicting the bifurcation types of the system as well as predicting the system dynamics and trajectories at spin speeds below and above the threshold speed of instability.


2019 ◽  
Vol 71 (1) ◽  
pp. 31-39
Author(s):  
Subrata Das ◽  
Sisir Kumar Guha

Purpose The purpose of this paper is to investigate the effect of turbulence on the stability characteristics of finite hydrodynamic journal bearing lubricated with micropolar fluid. Design/methodology/approach The non-dimensional transient Reynolds equation has been solved to obtain the non-dimensional pressure field which in turn used to obtain the load carrying capacity of the bearing. The second-order equations of motion applicable for journal bearing system have been solved using fourth-order Runge–Kutta method to obtain the stability characteristics. Findings It has been observed that turbulence has adverse effect on stability and the whirl ratio at laminar flow condition has the lowest value. Practical implications The paper provides the stability characteristics of the finite journal bearing lubricated with micropolar fluid operating in turbulent regime which is very common in practical applications. Originality/value Non-linear stability analysis of micropolar fluid lubricated journal bearing operating in turbulent regime has not been reported in literatures so far. This paper is an effort to address the problem of non-linear stability of journal bearings under micropolar lubrication with turbulent effect. The results obtained provide useful information for designing the journal bearing system for high speed applications.


2009 ◽  
Author(s):  
Jan H. Andersen ◽  
Hiroyuki Sada ◽  
Seiji Yamajo

This paper presents the results of an investigation into the theoretical and experimental performance of oil lubricated journal bearings. DNV has developed a new calculation tool for the analysis of journal bearing performance as part of shaft alignment analysis. The results of the calculation tool have been compared to other research and analysis methods under static and dynamic conditions. In addition, white metal bearings were tested with decreasing Sommerfeld number until loss of hydrodynamic lubrication. The experiments were carried out in a bearing test rig and with three different lubricants, normal mineral oil, emulsifying oil, and water-soluble oil. The tests were done with increasing water content in the lubricant. Results from the test were compared with calculation using the DNV analysis tool.


Lubricants ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 105 ◽  
Author(s):  
Maximilian Prölß ◽  
Hubert Schwarze ◽  
Thomas Hagemann ◽  
Philipp Zemella ◽  
Philipp Winking

This paper focuses on the operating behavior of journal bearings for industrial machinery application during run-ups. For this purpose, a numerical simulation code that is based on a two-dimensional extended and generalized Reynolds equation and a full three-dimensional energy equation, was advanced by a theoretical model considering the effects of mixed friction and warming of journal components during start-up. The mixed friction routine contained the elastic half-spaces model proposed by Boussinesq, which considers the influence of rough surfaces by implementing flow factors and calculates additional stiffness and dissipation in areas with solid interactions. Furthermore, a transient term was added in the energy equation to consider the thermal inertia of journal, and bearing to ensure a realistic heating during run-ups. Results of the prediction were compared to experimental data taken from a special test rig built up for validation procedures. Besides the conventional sensors for temperature, oil flow, and relative motion between shaft and stator, a contact voltage measurement was installed to determine the intensity of mixed friction. The evaluation of experimental data by Stribeck curves, based on a shaft torsion measurement, indicated a significant influence of run-up time on frictional moment. The friction coefficient of the rotor bearing system was strongly influenced by the run-up time. A short run-up time reduced the frictional coefficient in the mixed lubrication regime while the opposite behavior was observed in the hydrodynamic lubrication regime. The numerical code predicted these tendencies in good agreement with experimental data, however, only if the transient energy model was applied.


Author(s):  
D. Dowson ◽  
C. N. March

A thermohydrodynamic analysis is discussed which takes account of the general nature of the experimental observations in work which forms part of a programme of research designed to develop an improved understanding of better design procedures for journal bearings. The analysis considers compatible solutions of the Reynolds, energy, and heat conduction equations for two-dimensional conditions. It is shown that the solutions are in reasonable agreement with experimental findings. The two-dimensional solutions of the Reynolds and energy equations take full account of the variation of lubricant properties along and across the film. A very simple and approximate representation is used to estimate the temperature distribution in the bush, but the solutions present a reasonable estimate of bush and shaft temperatures. The ‘thermohydrodynamic’ or ‘heat conduction’ solution to journal bearing problems will provide intermediate, and it is hoped more realistic, results between the extreme ‘isothermal’ and ‘adiabatic’ conditions.


2020 ◽  
Vol 10 (15) ◽  
pp. 5199
Author(s):  
Biao Wan ◽  
Jianguo Yang ◽  
Sicong Sun

Wear of the journal bearings in a diesel engine is usually caused by asperity contact. Increased contact potential is caused by the asperity contact between the journal bearing and the shell. This paper analyzes the relationship between the contact potential and asperity contact and presents a method based on contact potential to monitor the bearing wear caused by asperity contact. A thermo-elastic hydrodynamic lubrication (THL) model of the journal bearing on the test bench was established and was verified by measuring its axis orbit. The asperity contact proportion was calculated based on this THL model, and its relationship with the measured contact potential was determined. The main contribution of this paper is to present a new method for monitoring the lubrication conditions of journal bearings in a diesel engine based on contact potential. The results showed that (a) when the minimum oil film thickness was less than 5 μm, asperity contact occurred between the bearing shell and the journal, which led to a sharp increase in contact pressure and a rapid increase in friction power consumption. Further, (b) there was a positive correlation between contact potential and asperity contact. The contact potential was greater than 0.75 mv when asperity contact occurred. These results proved that asperity contact could be accurately monitored using the contact potential, and the feasibility of using the contact potential to monitor the lubrication condition of a bearing was verified.


1973 ◽  
Vol 187 (1) ◽  
pp. 71-78 ◽  
Author(s):  
B. R. Reason ◽  
D. Dyer

We present a numerical solution for the operating conditions of a hydrodynamic porous journal bearing. The numerical method allows for the possibility of variable porosity in the bearing matrix, but the solution has been achieved on the assumption of matrix homogeneity. The relation between the various bearing parameters have been shown for a variety of bearing geometries and permeabilities enabling the operating conditions for this type of bearing to be better appreciated. A comparison of the present solution with approximate solutions used by other authors has been made, which indicates the useful working range of the approximate solutions.


1973 ◽  
Vol 95 (2) ◽  
pp. 166-172 ◽  
Author(s):  
H. Christensen ◽  
K. Tonder

In a number of previous papers a hydrodynamic theory of lubrication of rough bearing surfaces has been developed. The present paper describes the application of this theory to the analysis of the full journal bearing of finite width. The analysis demonstrates how the roughness influences the characteristics of the bearing and also shows how roughness interacts with features of nominal geometry and operating factors to determine the bearing response.


Sign in / Sign up

Export Citation Format

Share Document