Preparation of Exfoliated Polyethylene/Clay Nanocomposites at High Clay Content

2010 ◽  
Vol 150-151 ◽  
pp. 561-564
Author(s):  
Hao Qun Hong ◽  
Hai Yan Zhang ◽  
Hui He ◽  
De Min Jia

The polyethylene/montmorillonite (PE/MMT) nanocomposites were prepared by melt blending the organic MMT with the ternary-monomer graft copolymers of polyethylene (GPE) which were prepared by solid phase grafting maleic anhydride, methyl methacrylate and butyl acrylate onto PE. Fourier transform infrared spectroscopy was used to characterize the structure of GPE. X-ray diffraction patterns and transmission electron microscopy were used to characterize the morphology of GPE/MMT nanocomposites. Results showed that GPE was an outstanding polymeric material to prepare an exfoliated polymer/layered silicates nanocomposites due to the high polarity of GPE and high graft degree. Most layered silicates still maintain the exfoliated and well dispersed state even at 40 phr OMMT content. The exfoliation of layered silicates was attributed to the well intercalation and easy wetting of the grafted oligomers.

2006 ◽  
Vol 939 ◽  
Author(s):  
Tsung-Yen Tsai ◽  
Shau-Tai Lu ◽  
Chih-Hung Li ◽  
Chin-Jei Huang ◽  
Li-Chun Chen ◽  
...  

ABSTRACTIntercalated or exfoliated nanocomposites were composed by the novolac cured epoxy and one of three different kinds of layered silicates, such as montmorillonite (PK-802), saponite (Semecton-SA) and nontronite (PK-805). The bi-functional modifiers (PI/BEN or MI/BEN) with different ratio, which contained one of the promoters (2-phenylimidazole, PI and 2-methylimidazole, MI) of epoxy and benzalkonium chloride (BEN), were intercalated into the gallery regions of pure clays at the same time and followed by a crosslinking reaction. The properties of novolac cured epoxy/clay nanocomposites were characterized by wild-angle X-ray diffraction (WAXRD), thermal analysis (TGA/DSC), coefficiency of thermal expansion (TMA), mechanical properties (DMA), and transmission electron microscopy (TEM). According to the measurement, these novolac cured epoxy-clay nanocomposites have shown the significant improvement in the thermal, mechanical and barrier properties.


Proceedings ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 6 ◽  
Author(s):  
Heriarivelo Risite ◽  
Hicham Abou Oualid ◽  
Khalil El Mabrouk

The morphology and properties of polypropylene (PP)/organoclay nanocomposites prepared by melt processing were investigated with a special interest on the different effects of the use of different grafted PP as compatibilizers, i.e., maleic anhydride or silane-grafted species, PP-g-MA or PP-g-Si. When either PP-g-MA or PP-g-Si was added, better improvement of properties was achieved. The addition of PP-g-Si was found to increase the crystallization temperature upon the clay addition in comparison to PP-g-MA. Moreover, the PP-g-MA proved to be more efficient than PP-g-Si. The degree of reinforcement was found to be dependent on the interaction forces between the polymer matrix/clay, which resulted in intercalated/partial exfoliated structures for PP-g-Si while increasing clay content induced a change from exfoliated to intercalated using PP-g-MA, as revealed by transmission electron microscopy observations and X-ray diffraction analysis.


2014 ◽  
Vol 68 (8) ◽  
Author(s):  
Selvakumar Dhanasingh ◽  
Dharmaraj Nallasamy ◽  
Saravanan Padmanapan ◽  
Vinod Padaki

AbstractThe influence of cetyltrimethylammonium bromide and ethylene glycol on the size and dispersion of indium oxide nanoparticles prepared under hydrothermal conditions was investigated. The precursor compound, indium hydroxide, obtained by the hydrothermal method in the absence as well as the presence of cetyltrimethylammonium bromide, was converted to indium oxide by sintering at 400°C. The formation of nanoscale indium oxide upon sintering was ascertained by the characteristic infrared adsorption bands and X-ray diffraction patterns of indium oxide. Transmission electron microscopy and band gap values confirmed that the cetyltrimethylammonium bromide facilitated the formation of indium oxide nanoparticles smaller in size and narrower in distribution than those prepared without the assistance of cetyltrimethylammonium bromide.


2015 ◽  
Vol 68 (8) ◽  
pp. 1293 ◽  
Author(s):  
Pakvipar Chaopanich ◽  
Punnama Siriphannon

Hydroxyapatite (HAp) nanoparticles were successfully synthesized from an aqueous mixture of Ca(NO3)2·4H2O and (NH4)2HPO4 by a facile single-step refluxing method using polystyrene sulfonate (PSS) as a template. The effects of reaction times, pH, and PSS concentration on the HAp formation were investigated. It was found that the crystalline HAp was obtained under all conditions after refluxing the precursors for 3 and 6 h. The longer refluxing time, the greater the crystallinity and the larger the crystallite size of the HAp nanoparticles. The HAp with poor crystallinity was obtained at pH 8.5; however, the well-crystallized HAp was obtained when reaction pH was increased to 9.5 and 10.5. In addition, the X-ray diffraction patterns revealed that the presence of PSS template caused the reduction of HAp crystallite size along the (002) plane from 52.6 nm of non-template HAp to 43.4 nm and 41.4 nm of HAp with 0.05 and 0.2 wt-% PSS template, respectively. Transmission electron microscopy images of the synthesized HAp revealed the rod-shaped crystals of all samples. The synthesized HAp nanoparticles were modified by l-aspartic acid (Asp) and l-arginine (Arg), having negative and positive charges, respectively. It was found that the zeta potential of HAp was significantly changed from +5.46 to –24.70 mV after modification with Asp, whereas it was +4.72 mV in the Arg-modified HAp. These results suggested that the negatively charged amino acid was preferentially adsorbed onto the synthesized HAp surface.


2021 ◽  
Vol 103 (3) ◽  
pp. 67-73
Author(s):  
A.A. Toibek ◽  
◽  
K.T. Rustembekov ◽  
D.A. Kaikenov ◽  
M. Stoev ◽  
...  

For the first time, double gadolinium tellurites of the composition GdMIITeO4.5 (MII — Sr, Ba) were synthesized by the solid-phase method. The solid-phase synthesis of samples was carried out from decrepitated gadolinium (III) and tellurium (IV) oxides, strontium, and barium carbonates according to the standard ceramic technology. The synthesis was carried out in the temperature range of 800-1100 °C. The samples obtained were confirmed by X-ray phase analysis. X-ray phase analysis was carried out on an Empyrean instrument in the XRDML Pananalitical format. The intensity of the diffraction maxima was estimated on a 100-point scale. X-ray diffraction patterns indexing of the powder of gadolinium tellurites — alkaline earth metals studied were carried out by the homology method. The reliability and correctness of the results of indexing the X-ray diffraction patterns are confirmed by the good agreement between the experimental and calculated values of the interplanar distances (d) and the agreement between the values of the X-ray and pycnometric densities. It was found that compounds GdSrTeO4.5 and GdBaTeO4.5 crystallize in the monoclinic system and have the unit cell parameters, namely GdSrTeO4.5 — a = 12.7610, b = 10.4289, c = 8.6235 Å, V° = 1141.83 Å3, β = 95.77°, Z = 5, ρrent. = 3.22, ρpikn. = (3.10±0.09) g/cm3; GdBaTeO4.5 — a = 15.7272, b = 15.8351, c = 7.1393 Å, V° = 1769.72 Å3, β = 95.53°, Z = 8, ρrent = 3.71, ρpick = (3.61±0.10) g/cm3. Using the Landiya method, the standard heat capacities of the compounds were estimated from the calculated values of the standard entropies, and the temperature dependences of the heat capacities of the gadolinium tellurites synthesized were determined in the temperature range of 298–850 K.


2007 ◽  
Vol 7 (2) ◽  
pp. 525-529 ◽  
Author(s):  
Bo Zhou ◽  
Jun-Jie Zhu

A chemical co-reduction route in aqueous solution was developed to synthesize Bi100−xSbx alloys at room temperature. The hydrolyses of Bi(III) and Sb(III) were effectively avoided by selecting proper raw materials and coordinator. X-ray diffraction analysis indicated that the as-prepared Bi100−xSbx alloys were homogeneous and phase-pure, and the Bi/Sb ratios in the alloys were very close to those in the aqueous solutions. The transmission electron microscope observation showed that the as-prepared Bi100−xSbx (x = 0∼100) alloys were particles with a size of tens of nanometers. The selected area electron diffraction patterns confirmed the high crystallinity, the homogeneousness, and the composition controllability of as-prepared alloys. All these characters and the nanometer-scaled size of the alloys are believed to be beneficial to the thermoelectric property of the Bi100−xSbx alloys.


2007 ◽  
Vol 7 (2) ◽  
pp. 634-640 ◽  
Author(s):  
M. Siliani ◽  
M. A. López-Manchado ◽  
J. L. Valentín ◽  
M. Arroyo ◽  
A. Marcos ◽  
...  

Novel millable polyurethane (PU)/organoclay nanocomposites have been successfully prepared by conventional transformation techniques. One natural (C6A) and two organically modified (C15A and C30B) montmorillonites have been used as clays for preparing PU nanocomposites. The optimum dispersion of nanofiller at a nanometer scale in PU matrix was confirmed by X-ray diffraction patterns and transmission electron microscopy. A substantial improvement of the PU properties by addition of only a small amount of organoclay was observed. It is worthy to note that the organoclays show a different interfacial interaction with the PU matrix, which was reflected in different macroscopic properties. Thus, C30B organoclay seems to react with PU chains to form covalent bonds, while C15Aonly interacts physically with PU chains. Mechanical and barrier properties are analyzed.


2007 ◽  
Vol 124-126 ◽  
pp. 1083-1086
Author(s):  
Jun Hee Sung ◽  
Hyoung Jin Choi

Nanocomposites of conducting polymers of polyaniline (PANI), poly(oethoxyaniline) (PEOA) and polypyrrole (PPy) with clay prepared via either in-situ emulsion polymerization or solvent intercalation were investigated especially for electrorheological fluid (ER) application. Internal structures of these nanocomposites were examined via wide angle X-ray diffraction (WAXD), and transmission electron microscope (TEM). The intercalated nanostructures analyzed via WAXD and TEM were correlated with the electrical property change originated from the nanoscale interaction between clay and conducting polymer. Moreover, their ER behaviors were measured via rotational rheometer with external electric field controller.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Wei-Lin Wang ◽  
Chia-Ti Wang ◽  
Wei-Chun Chen ◽  
Kuo-Tzu Peng ◽  
Ming-Hsin Yeh ◽  
...  

Ta/TaN bilayers have been deposited by a commercial self-ionized plasma (SIP) system. The microstructures of Ta/TaN bilayers have been systematically characterized by X-ray diffraction patterns and cross-sectional transmission electron microscopy. TaN films deposited by SIP system are amorphous. The crystalline behavior of Ta film can be controlled by the N concentration of underlying TaN film. On amorphous TaN film with low N concentration, overdeposited Ta film is the mixture ofα- andβ-phases with amorphous-like structure. Increasing the N concentration of amorphous TaN underlayer successfully leads upper Ta film to form pureα-phase. For the practical application, the electrical property and reliability of Cu interconnection structure have been investigated by utilizing various types of Ta/TaN diffusion barrier. The diffusion barrier fabricated by the combination of crystallizedα-Ta and TaN with high N concentration efficiently reduces the KRc and improves the EM resistance of Cu interconnection structure.


2011 ◽  
Vol 364 ◽  
pp. 317-321 ◽  
Author(s):  
Siti Zulaiha Hairaldin ◽  
Wan Md Zin Wan Yunus ◽  
Nor Azowa Ibrahim

In this study, Octadecylamine Modified montmorillonites (ODAMMT) were used to prepare polylactide/polycaprolactone (PLA/PCL) clay nanocomposites. PLA and PCL were blend using an internal mixer by melt blending method. The other sample was blend with natrium monmorillonite (NaMMT) and Octadecylamine modified monmorillonite to produce PLA/PCL-NaMMT and PLA/PCL-ODAMMT. To characterize the polymer nanocomposite, X-ray diffraction (XRD), FTIR and SEM analysis were conducted. Comparison of morphology were made up between neat PLA/PCL, PLA/PCL with presence of of montmorillonite and octadecylamine modified monmorillonite respectively based on SEM micrograph. The number-average diameter was calculated for PLA/PCL, PLA/PCL-NaMMT, and PLA/PCL-ODAMMT.


Sign in / Sign up

Export Citation Format

Share Document