Study on the Lithium-Ion Batteries Performance of Electric Vehicles

2014 ◽  
Vol 986-987 ◽  
pp. 1869-1872 ◽  
Author(s):  
Jun Min Lu ◽  
Xiao Kan Wang

By comprehensive analyzing the lead-acid batteries development situation of electric vehicle at first, and making a comprehensive comparison for the performances and features of the lead-acid batteries, nickel hydrogen batteries and lithium-ion batteries, then studying the charge and discharge performance of the lithium batteries which provides technical support and references for the application and popularization of lithium-ion batteries in electric vehicles.

2018 ◽  
Vol 390 ◽  
pp. 286-296 ◽  
Author(s):  
Changfu Zou ◽  
Lei Zhang ◽  
Xiaosong Hu ◽  
Zhenpo Wang ◽  
Torsten Wik ◽  
...  

2015 ◽  
Vol 236 ◽  
pp. 106-112
Author(s):  
Grzegorz Grzeczka ◽  
Paweł Swoboda

The most commonly used starter batteries for ship engine rooms are lead acid systems. Lead acid batters have the lowest electrochemical parameters from all other modern electrochemical systems. On the other hand their biggest advantage is the price of the cell which is much lower comparing to other electrochemical systems. Due to fact that the lithium – ion batteries are very widely used and constantly developed this technology is starting to be promising as an alternative for lead acid batteries for starter applications. Because of this there is a need to verify if the lithium - ion technology can be used for start-up and power backup systems and how will it affect the construction of the engine room and those systems. In order to determine the potential energetic requirements during the design of starter systems in an backup engine room with the use of lithium – ion batteries, in the article the analytic of their performance was conducted with comparison of other electrochemical systems.


Author(s):  
Faraz Akbar

This paper contributes towards the research and development campaign on the weight reduction of electric vehicles through the technology of structural composite batteries. Batteries are the key component and an integral part of electric vehicles which constitutes a major proportion of the vehicle’s weight. Most of the electric vehicle manufacturers use lithium-ion batteries which are in recent years have gone through a major development. The use of lithium-ion batteries within a carbon reinforced composite structure of the car has given rise to the concept of structural batteries where both the mechanical strength of the structure and the chemistry of the battery to be optimized. Various aspects of design in the formulation of the structural batteries are reviewed including material selection with respect to its electrical and mechanical requirements. In this research work, properties of carbon fiber are utilised which provide mechanical strength to the vehicle whilst be an efficient electrode for the lithium-ion structural batteries. The impacts of lithiation on the strength of the structure and charge time for the batteries are explored. Significant results of weight reduction have been achieved by formulating the structural battery for the roof of a passenger car having a 30 kW-hr battery. At 0.7 mm of active electrode thickness is designed within the roof structure, the roof can store 5.9 kW-hr of energy with the reduction of 56.5 kg in overall weight of the vehicle. The battery pack of 255 kg gets completely replaced by the structural composite battery because of its magnificent specific charge capacity at the active electrode with the thickness of 3.5 mm.


Batteries ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 58 ◽  
Author(s):  
Choong-koo Chang

Lead-acid batteries are currently the most popular for direct current (DC) power in power plants. They are also the most widely used electric energy storage device but too much space is needed to increase energy storage. Lithium-ion batteries have a higher energy density, allowing them to store more energy than other types of batteries. The purpose of this paper is to elaborate on the factors affecting the capacity design of lithium-ion stationary batteries. Factors that need to be considered in calculating the capacity of stationary lithium-ion batteries are investigated and reviewed, and based on the results, a method of calculating capacity of stationary lithium-ion batteries for industrial use is proposed. In addition, the capacity and area required for replacing the lead-acid batteries for nuclear power plants with lithium-ion batteries are reviewed as part of this case study.


2021 ◽  
Vol 308 ◽  
pp. 01015
Author(s):  
Mengqi Hu ◽  
Yuhao Wang ◽  
Diwen Ye

Energy plays an important role in human society. With the development of science and technology, the increasing demand for new energy like electric energy cannot be ignored. The battery is the key component of electric vehicles which are the centers of future development. Lithium-ion batteries have great advantages in electric vehicle applications for their excellent performance. We need to find ways to improve lithium-ion batteries to promote the development of electric vehicles fundamentally. The high specific energy, low self-discharge, good cycling performance, no memory effect, and other advantages lead to the excellent performance of lithium-ion batteries. This paper reviews the unique merits of lithium-ion batteries compared with other important battery technologies in electric vehicle application in three main aspects and describes some methods to enhance the performance of lithium-ion batteries by improving the anode, cathode, and electrolyte, respectively. For instance, we can use LiNi1-x-yCoxMnyO2 (NCM) materials as cathode, silicon-based materials as anode with composite materials like FeOOH@rGO and SiNP@NC add more silicon in the composite anode structure and silicon nanowire anode to improve its mechanical stability. Also, with an example of their employment in the BMW i3 94 Ah vehicles, the application outlook of lithium-ion batteries in electric vehicles and their development trend in the future have been prospected. Although electric vehicles are becoming the ideal next-generation vehicles with the increasing environmental friendliness, the battery technology, such as its safety problem and the manufacturing cost, etc., remains a big challenge in the development of lithium-ion batteries in electric vehicles.


RSC Advances ◽  
2018 ◽  
Vol 8 (45) ◽  
pp. 25325-25333 ◽  
Author(s):  
Lifu Li ◽  
Junwei Hou

It is difficult to use conventional capacity detection methods to determine nondestructively and rapidly the capacity of lithium-ion (Li-ion) batteries used in electric vehicles.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Sujuan Chen ◽  
Zhendong Zhao ◽  
Xinyan Gu

The energy density of canode materials for lithium-ion batteries has a major impact on the driving range of electric vehicles. In order to study the charge-discharge characteristics and application feasibility of Li-NiMnCo lithium-ion batteries for vehicles, a series of charge and discharge experiments were carried out with different rates of Li-NiMnCo lithium-ion batteries (the ratio of nickel, cobalt, and manganese was 5 : 2 : 3) in constant-current-constant-voltage mode. Firstly, a set of charge-discharge experiments were performed on different types of single-cell lithium-ion batteries. The results show that, under temperature conditions, the charge and discharge voltage-capacity curves of the four different types of Li-NiMnCo lithium batteries mentioned in the paper are not much different, and the charge-discharge characteristic curves are similar, indicating that different types of batteries with the same material composition have similar charge and discharge characteristics. Subsequently, a series of charge and discharge tests with different rates were conducted on such ternary lithium batteries. The characteristic curves with different charge-discharge rates indicate that this new type of ternary lithium battery has high current charge and discharge capability and is suitable for use in new energy electric vehicles. In addition, by analyzing the voltage-SOC curve under different magnification conditions, it is known that there is an approximate linear relationship between the battery voltage value and the SOC within a certain SOC range. The SOC value can be evaluated by the battery voltage, which should be controlled within a reasonable range to avoid overcharge or overdischarge of battery, thereby, causing permanent damage to the battery.


2019 ◽  
Vol 21 (41) ◽  
pp. 22740-22755 ◽  
Author(s):  
Mei-Chin Pang ◽  
Yucang Hao ◽  
Monica Marinescu ◽  
Huizhi Wang ◽  
Mu Chen ◽  
...  

Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries.


2021 ◽  
Vol 13 (10) ◽  
pp. 5726
Author(s):  
Aleksandra Wewer ◽  
Pinar Bilge ◽  
Franz Dietrich

Electromobility is a new approach to the reduction of CO2 emissions and the deceleration of global warming. Its environmental impacts are often compared to traditional mobility solutions based on gasoline or diesel engines. The comparison pertains mostly to the single life cycle of a battery. The impact of multiple life cycles remains an important, and yet unanswered, question. The aim of this paper is to demonstrate advances of 2nd life applications for lithium ion batteries from electric vehicles based on their energy demand. Therefore, it highlights the limitations of a conventional life cycle analysis (LCA) and presents a supplementary method of analysis by providing the design and results of a meta study on the environmental impact of lithium ion batteries. The study focuses on energy demand, and investigates its total impact for different cases considering 2nd life applications such as (C1) material recycling, (C2) repurposing and (C3) reuse. Required reprocessing methods such as remanufacturing of batteries lie at the basis of these 2nd life applications. Batteries are used in their 2nd lives for stationary energy storage (C2, repurpose) and electric vehicles (C3, reuse). The study results confirm that both of these 2nd life applications require less energy than the recycling of batteries at the end of their first life and the production of new batteries. The paper concludes by identifying future research areas in order to generate precise forecasts for 2nd life applications and their industrial dissemination.


Sign in / Sign up

Export Citation Format

Share Document