Prediction of Chloride Ingress into Concrete by Capillary Absorption

2010 ◽  
Vol 163-167 ◽  
pp. 3210-3213 ◽  
Author(s):  
Li Cheng Wang

In this paper, the lattice network model on mesoscale is established based on the random geometry meshing technique to investigate the chloride ingress into unsaturated concrete. Concrete is treated as a composite material with three phases, i.e., the coarse aggregates, the mortar, and the interface between them. The diffusivity for water and chloride in each phase of the mesoscopic structure of concrete is separately quantified by experimental data or through empirical assumption. The numerical predictions are compared with the available experimental measurements. The comparisons indicate that numerical predictions agree well with the test results.

Author(s):  
A Strozzi ◽  
A Unsworth

The paper by O'Carrol et al. (1), which addresses the problem of an elastomeric disc indented by a spherical punch, has been evaluated. The sources of disagreement between linear elastic numerical predictions and experimental measurements noted in this paper have been critically examined in the light of finite element forecasts obtained with a package which incorporates finite elasticity effects and incompressibility.


Author(s):  
Harsh Vinayak ◽  
Donald R. Houser

Abstract This paper deals with the experimental study of dynamic transmission error of a gear pair. Two aspects of the experiment are discussed : 1) design of the test facility and data acquisition system and 2) comparison of transmission error and load distribution with experimental data. Several gears were tested under varying misalignments. A prediction program LDP (Load distribution Program) was used for theoretical calculations of dynamic transmission error.


Author(s):  
Andreas Jeromin ◽  
Christian Eichler ◽  
Berthold Noll ◽  
Manfred Aigner

Numerical predictions of conjugate heat transfer on an effusion cooled flat plate were performed and compared to detailed experimental data. The commercial package CFX® is used as flow solver. The effusion holes in the referenced experiment had an inclination angle of 17 degrees and were distributed in a staggered array of 7 rows. The geometry and boundary conditions in the experiments were derived from modern gas turbine combustors. The computational domain contains a plenum chamber for coolant supply, a solid wall and the main flow duct. Conjugate heat transfer conditions are applied in order to couple the heat fluxes between the fluid region and the solid wall. The fluid domain contains 2.4 million nodes, the solid domain 300,000 nodes. Turbulence modeling is provided by the SST turbulence model which allows the resolution of the laminar sublayer without wall functions. The numerical predictions of velocity and temperature distributions at certain locations show significant differences to the experimental data in velocity and temperature profiles. It is assumed that this behavior is due to inappropriate modeling of turbulence especially in the effusion hole. Nonetheless, the numerically predicted heat transfer coefficients are in good agreement with the experimental data at low blowing ratios.


2016 ◽  
Vol 25 (04) ◽  
pp. 1650025 ◽  
Author(s):  
Z. J. Jiang ◽  
J. Wang ◽  
Y. Huang

The charged particles produced in nucleus–nucleus collisions come from leading particles and those frozen out from the hot and dense matter created in collisions. The leading particles are conventionally supposed having Gaussian rapidity distributions normalized to the number of participants. The hot and dense matter is assumed to expand according to the unified hydrodynamics, a hydro model which unifies the features of Landau and Hwa–Bjorken model, and freeze out into charged particles from a time-like hypersurface with a proper time of [Formula: see text]. The rapidity distribution of this part of charged particles can be derived analytically. The combined contribution from both leading particles and unified hydrodynamics is then compared against the experimental data performed by BNL-RHIC-PHOBOS Collaboration in different centrality Cu–Cu collisions at [Formula: see text] and 62.4[Formula: see text]GeV, respectively. The model predictions are consistent with experimental measurements.


2019 ◽  
Author(s):  
Eric Harvey ◽  
Isabelle Gounand ◽  
Emanuel A. Fronhofer ◽  
Florian Altermatt

AbstractCross-ecosystem subsidies are studied with a focus on resource exchange at local ecosystem boundaries. This perspective ignores regional dynamics that can emerge via constraints imposed by the landscape, potentially leading to spatially-dependent effects of subsidies and spatial feedbacks. Using miniaturized landscape analogues of river dendritic and terrestrial lattice spatial networks, we manipulated and studied resource exchange between the two whole networks. We found that community composition in dendritic networks depended on the resource pulse from the lattice network, with the strength of this effect declining in larger downstream patches. In turn, this spatially-dependent effect imposed constraints on the lattice network with populations in that network reaching higher densities when connected to more central patches in the dendritic network. Consequently, localized cross-ecosystem fluxes, and their respective effects on recipient ecosystems, must be studied in a perspective taking into account the explicit spatial configuration of the landscape.Statement of authorshipEH, IG, EAF and FA designed the research; EH conducted the lab experiment with support from IG, EAF and FA, processed the experimental data with methodological developments from IG, and carried out the analysis of experimental data; all authors participated in results interpretation; EH wrote the first draft of the manuscript; All authors significantly contributed to further manuscript revisions.


2020 ◽  
pp. 46-53
Author(s):  
Jakub Mularski ◽  
Amit Arora ◽  
Muhammad Azam Saeed ◽  
Łukasz Niedźwiecki ◽  
Samrand Saeidi

The paper regards the impact of four different turbulence models on the air flow pattern in a confined rectangular space. The following approaches are analyzed. The Baseline (BSL) Reynolds model, the Speziale-Sarkar-Gatzki (SSG) Reynolds model, the Menter's shear-stress transport (SST) model and the basic k-ε model. Computational fluid dynamics (CFD) results are compared with the experimental measurements in four different planes. The Reynolds number for the given conditions is equal to 5000. The k-ε model yielded the most accurate results with regard to the experimental data but its reliability decreased near the wall region. With respect to the other models, it was also found that the k-ε approach generated the least circulating flow.


2019 ◽  
Vol 143 ◽  
pp. 648-662 ◽  
Author(s):  
Ivan Felipe Silva dos Santos ◽  
Ramiro Gustavo Ramirez Camacho ◽  
Geraldo Lúcio Tiago Filho ◽  
Antonio Carlos Barkett Botan ◽  
Barbara Amoeiro Vinent

2016 ◽  
Vol 846 ◽  
pp. 12-17
Author(s):  
Ahmed Faheem ◽  
Gianluca Ranzi ◽  
Francesco Fiorito ◽  
Cheng Wang Lei

This paper presents a numerical procedure for modelling the thermal performance of ventilated hollow core slabs (VHCS). A turbulence model suitable for this purpose is identified first by considering a smooth horizontal pipe subjected to turbulent mixed convention conditions typical of VHCSs. Comparison of the fully-developed dimensionless velocity (u+) and temperature (T+) profiles as well as the Nusselt numbers (Nu) predicted by five different turbulence models against empirical expressions available in the literature shows that the Standard and Realisable k-ε models provide the best overall predictions of u+, T+ and Nu. Since the Standard k-ε model gives slightly better estimates of the Nu values, it is adopted to model the thermal performance of a VHCS geometry for which experimental thermal responses are reported in the literature. The numerical predictions of local temperatures within the VHCS agree well with the experimental measurements, and hence the Standard k-ε model is recommended here for the modeling of VHCSs.


Sign in / Sign up

Export Citation Format

Share Document