The Rehabilitation of Pile Foundation of a Concrete Continous Bridge in Guangzhou City

2010 ◽  
Vol 163-167 ◽  
pp. 3499-3503
Author(s):  
Hai Bo Jiang ◽  
Ling Ming Yang ◽  
Ai De He

Due to heavier traffic loads, progressive structural age, and corrosion of steel reinforcement, there has been an increasing need to strengthen the pile foundation of concrete bridges. In this paper, the damages and deteriorations on a concrete bridge in Guangzhou City are described in details, which causes are discussed also. The rehabilitation method by prestressed cushion cap is proposed based on the finite element analysis. The rehabilitation scheme is verified by the result of calculation, and the practice of strengthening project proves that this method is technical feasibility, construction convenience and lower economic cost. The research results can be provided as a reference for the similar bridges.

2014 ◽  
Vol 8 (1) ◽  
pp. 193-200
Author(s):  
Shengnan Huang ◽  
Lieping Ye ◽  
Xinzheng Lu

During a bridge service life, many factors can cause damage accumulation such as overloaded traffic, fatigue effect, and so on. Hence, the identification of potential damages has been received wide attention to prevent such sudden fatal accident. An experiment of a continuous rigid frame concrete bridge, which had 3 spans and a total length of 18 meters, was presented in this paper. Two load stages and ten different load steps were simulated to test various scenario of long-term loading and different levels of overload. Curvature mode method was adopted to detect the damage during the exercises. The changes of curvature modes were used to detect damage after the ten load steps. This method performed excellent to identify the damage position of the bridge. So, it is concluded that the curvature modes can be used to detect damage in actual structures. In addition, the Finite-Element Analysis (FEA) was utilized, and the experimental recurring was verified positively through FEA model.


2020 ◽  
Vol 12 (3) ◽  
pp. 168781402091053 ◽  
Author(s):  
Yongsheng Tang ◽  
Jigang Cang ◽  
Yandong Yao ◽  
Ce Chen

Current displacement measurement methods cannot cope with the demands of the long-term measurement of small- or medium-span concrete bridges because of some technology or economic challenges. In this article, a displacement measurement method is proposed for concrete bridges based on fibre-reinforced polymer-packaged optical fibre sensors. The sensing principle and manufacture process of the proposed sensor are introduced as well as the strain sensing property. Then, a relationship is established between the strain and the displacement based on the distributed strain monitoring. Finally, some field tests are implemented using a simply supported concrete bridge. The tests include static loading test, dynamic loading test with specific speeds and dynamic random traffic loading test. The field test results show that the proposed method can measure the displacement of concrete bridges under traffic loads with reasonable accuracy. Moreover, different types of sensor distributions are proposed to investigate the displacement measurement effects to optimise the sensor installation. Although the sensors cover only some key parts of the girder, the results also verify the accuracy of the proposed method. Therefore, the proposed method can be implemented in concrete bridges in future.


2010 ◽  
Vol 97-101 ◽  
pp. 4395-4398
Author(s):  
Fei Xin Huang ◽  
Hai Bo Jiang ◽  
Chun Gen Wei ◽  
Shi Wu Ouyang ◽  
Xiang Long

Anchorages are the most important structure in the bridge’s rehabilitation engineering under external prestressing load, whose stress distribution is complex, it is necessary to carry out a detailed and careful structure analysis of anchorages. The inspection and strengthening design of an extra-large Bridge in Dongpu of Guangzhou City was taken for the background in the paper, the longitudinal stress, transverse stress and vertical stress of the end anchorage were given before and after adding concrete block, through finite element analysis of the end anchorage under larger prestressing load and the results of calculation of the anchorage were analyzed, it was showed that the strengthened effect of the end anchorage had been very obvious after concrete block was added. At the same time it was found that there were still some deficiencies on the end anchorage after concrete was added and the suggestions of the local strengthening of the end anchorage were proposed. It is helpful and referenced for the design of similar anchorage.


2019 ◽  
Vol 13 (3) ◽  
pp. 5334-5346
Author(s):  
M. N. Nguyen ◽  
L. Q. Nguyen ◽  
H. M. Chu ◽  
H. N. Vu

In this paper, we report on a SOI-based comb capacitive-type accelerometer that senses acceleration in two lateral directions. The structure of the accelerometer was designed using a proof mass connected by four folded-beam springs, which are compliant to inertial displacement causing by attached acceleration in the two lateral directions. At the same time, the folded-beam springs enabled to suppress cross-talk causing by mechanical coupling from parasitic vibration modes. The differential capacitor sense structure was employed to eliminate common mode effects. The design of gap between comb fingers was also analyzed to find an optimally sensing comb electrode structure. The design of the accelerometer was carried out using the finite element analysis. The fabrication of the device was based on SOI-micromachining. The characteristics of the accelerometer have been investigated by a fully differential capacitive bridge interface using a sub-fF switched-capacitor integrator circuit. The sensitivities of the accelerometer in the two lateral directions were determined to be 6 and 5.5 fF/g, respectively. The cross-axis sensitivities of the accelerometer were less than 5%, which shows that the accelerometer can be used for measuring precisely acceleration in the two lateral directions. The accelerometer operates linearly in the range of investigated acceleration from 0 to 4g. The proposed accelerometer is expected for low-g applications.


2001 ◽  
Vol 29 (3) ◽  
pp. 134-154 ◽  
Author(s):  
J. R. Luchini ◽  
M. M. Motil ◽  
W. V. Mars

Abstract This paper discusses the measurement and modeling of tire rolling resistance for a group of radial medium truck tires. The tires were subjected to tread depth modifications by “buffing” the tread surface. The experimental work used the equilibrium test method of SAE J-1269. The finite element analysis (FEA) tire model for tire rolling resistance has been previously presented. The results of the testing showed changes in rolling resistance as a function of tread depth that were inconsistent between tires. Several observations were also inconsistent with published information and common knowledge. Several mechanisms were proposed to explain the results. Additional experiments and models were used to evaluate the mechanisms. Mechanisms that were examined included tire age, surface texture, and tire shape. An explanation based on buffed tread radius, and the resulting changes in footprint stresses, is proposed that explains the observed experimental changes in rolling resistance with tread depth.


1985 ◽  
Vol 13 (3) ◽  
pp. 127-146 ◽  
Author(s):  
R. Prabhakaran

Abstract The finite element method, which is a numerical discretization technique for obtaining approximate solutions to complex physical problems, is accepted in many industries as the primary tool for structural analysis. Computer graphics is an essential ingredient of the finite element analysis process. The use of interactive graphics techniques for analysis of tires is discussed in this presentation. The features and capabilities of the program used for pre- and post-processing for finite element analysis at GenCorp are included.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2020 ◽  
Vol 15 (2) ◽  
Author(s):  
Sugunarani S ◽  
Santhosh V

This work deals with the analysis of heat generation and dissipation in the disc brake of a car during braking and the following release period by using computer-aided engineering software for three different materials of the rotor disc and brake pad. The objective of this work is to analyze the temperature distribution of rotor disc during operation using COMSOL Multiphysics. The work uses the finite element analysis techniques to calculate and predict the temperature distribution on the brake disc and to identify the critical temperature of the brake rotor disc. Conduction, convection and radiation of heat transfer have been analyzed. The results obtained from the analysis indicates that different material on the same retardation of the car during braking shows different temperature distribution. A comparative study was made between grey cast iron (GCI), Aluminium Metal Matrix Composite (AMMC), Alloy steel materials are used for brake disc and the best material for making brake disc based on the rate of heat dissipation have been suggested.


Sign in / Sign up

Export Citation Format

Share Document