Experimental Study of Shear Behavior of High-Strength Concrete Beams with High-Strength Stirrups

2010 ◽  
Vol 163-167 ◽  
pp. 972-976
Author(s):  
Qing Xuan Shi ◽  
Yuan Tian ◽  
Wei Hou

This paper presents an experimental study of shear behavior of simply supported HSC beams reinforced with high-strength stirrups under monotonic concentrated loading. Six specimens with 150×300 mm square cross section were tested. The effects of three variables such as the stirrup ratio, stirrup yield strength and average confining stress are studied. Based on test results, the shear behavior of HSC beams with high-strength stirrups was evaluated. Combined with other test results, shear strength measured in test are compared with the values calculated according to the expressions proposed in this paper and in Code for design of concrete structures of China (GB 50010-2002). The study concludes that shear capacity is sparingly estimated by the Code for design of concrete structures of China (GB 50010-2002) when the average confining stress below 3MPa, but it is emphasis on insecurity when the average confining stress exceeds 3MPa. The empirical equation proposed in this paper for predicting the shear strength of HSC beams with high-strength stirrups is appropriate.

2012 ◽  
Vol 166-169 ◽  
pp. 3298-3301
Author(s):  
Shan Suo Zheng ◽  
Xie Han ◽  
Qing Lin Tao ◽  
Wei Wang

Based on the tests of 5 steel reinforced high strength concrete (SRHSC) frame interior joint specimens, this paper discusses the mechanism of load transference in the joints. Shear effect of each part of the joints including concrete, steel web, band, flange frame and stirrup is analyzed. And then, the shear capacity equation of SRHSC frame joints is presented. Comparing the calculation results with the test results, it is indicated that the shear capacity equation proposed can correctly evaluate the ultimate shear strength for SRHSC joints.


2014 ◽  
Vol 578-579 ◽  
pp. 164-167 ◽  
Author(s):  
Peng Li ◽  
Xian Tang Zhang ◽  
Ming Ping Wang

To investigate the influence of shear span ratio for the shear behavior of reinforced concrete beam with HRBF500 high strength rebars as stirrups, an experiment was carried out, which included 8 simply supported beams with HRBF500 rebars as stirrups. Under concentrated loads, the crack, deflection, strain of rebars, bearing capacity and failure mode are observed under different shear span ratios. Some comparisons are made between test results and calculated outcome. It shows that the shear span ratio has very important influent on the shear behavior of reinforced concrete beam with HRBF500 high strength bars as stirrups. Formula in code for design of concrete structures can be used to calculate its shear capacity with enough safety.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1726 ◽  
Author(s):  
Qing Zhi ◽  
Xinfu Xiong ◽  
Wenjie Yang ◽  
Sha Liu ◽  
Jingang Xiong

The precast shear wall behavior in the serviceability and ultimate limit states depends on the shear and shear-flexural behavior of the joints between the precast components or between the precast component and footing. This study presents a series of tests on the shear strength of joints, which were applied to the interface of precast shear walls. The tested parameters included the joint types, the numbers of shear keys, the existence of high strength steel bars inserted at the joints, and the levels of confining stress. The shear capacity, stiffness, and shear transfer mechanisms of these joints were investigated. It could be concluded that the epoxied and high strength reinforcing joints had consistently higher shear strength than that of dry and plain joints. For the specimens with an inclined angle at the end of the keys of less than 60 degrees, the width of the dry joint opening may be excessively large, resulting in large shear slip and the key not shearing-off under confining stress of less than 1.0 MPa. The tested results were compared with AASHTO and other design criteria. Several formulas regarding the joint shear capacities were also proposed according to the specifications and the tested results.


2013 ◽  
Vol 438-439 ◽  
pp. 749-755 ◽  
Author(s):  
Tong Hao ◽  
Dong Li

By the experimental studying on the basic mechanical properties of recycled concrete hollow block masonry, the compressive and shear behavior of recycled aggregate concrete hollow block masonry under different mortar strength were analyzed. Research indicated that the compressive and shear behavior of recycled aggregate concrete hollow block masonry was similar to that of ordinary concrete hollow block masonry. The normal formula was recommended to calculate the compressive strength of the masonry. The shear strength of the masonry was affected by the mortar strength. The shear strength calculation formula of recycled concrete hollow block masonry was proposed according to the formula of masonry design code. The calculating results were in good agreement with the test results.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yao Xiao ◽  
Huafeng Deng ◽  
Jingcheng Fang ◽  
Hengbin Zhang ◽  
Jianlin Li

The results obtained from the mechanical test of rock samples inevitably suffer dispersion owing to discrepancies between test specimens. In view of these deficiencies, the present study proposes a method based on the empirical equation of shear strength developed by Barton to determine the shear strength parameters of joint surfaces using a single test specimen. This approach is then applied to optimize the analysis of multiple specimens. An analysis of experimental results verifies that the shear strength parameters of joint surfaces obtained by the proposed method can more accurately reflect the shear mechanics of multiple specimens than conventional multiple sample analyses; meanwhile, the results are reasonable and reliable. More importantly, the optimized method ensures the shear strength parameters are no longer affected by the sequence of specimens employed during shear test. The optimized analysis method eliminates the effect of differences between specimens and the influence of subjective factors on test results and therefore provides more realistic evaluations of shear strength parameters.


2019 ◽  
Vol 969 ◽  
pp. 327-334
Author(s):  
C. Jairaj ◽  
M.T. Prathap Kumar ◽  
H. Muralidhara

This BC Soil are expansive in nature and are problematic because of low shear strength and high compressibility. Review of literatures have proven that addition of lime imparts high strength with a corresponding reduction in swell of BC soils. In addition, Bio-enzymes have also been found to play a key role as activators in improving the characteristics of clayey soils such as BC soil. Development and use of non-traditional ground improvement techniques such as bio-enzymes in combination with lime for soil stabilization helps to reduce the cost and the detrimental effects on the soil environment. In the present study lime and bio-enzymes were used as soil stabilizing agents. Compaction test results on BC soil admixed with different percent of lime indicated that 3% addition lime gives higher maximum dry density of 17kN/m3 with OMC of 21% compare to other addition of lime percentages. Keeping 3% of lime as optimum lime content(OLC), BC Soil was admixed with different dosages of Bio-enzymes 25ml/m3, 50ml/m3, 100 ml/m3,150ml/m3, and 200ml/m3 along with OLC was tested for compaction and unconfined compressive strength(UCC). Further UCC test was carried out for different curing period of 0, 7, 15, 30, and 60 Days to analyse the long term effect of BC soil admixed with bio-enzymes with and without lime content. Morphological and chemical analysis was done by using XRD and SEM analysis, from all the test results it was found that 3%OLC + 75ml/m3 of bio-enzymes for 7 day of curing gives higher UCC of 450 kPa. From the SEM it was found that better bond between particles found to develop in bio-enzyme+ lime admixed BC soil in comparison with lime alone admixed BC soil. XRD studies indicated morphological changes in crystallinity and structure of stabilized BC soil in comparison to BC soil alone.


2012 ◽  
Vol 204-208 ◽  
pp. 3287-3293
Author(s):  
Xin Xue ◽  
Hiroshi Seki ◽  
Yu Song

There have been few reports on shear behavior of reinforced concrete (RC) beams with corroded stirrups, and the influence of stirrup corrosion has yet to be identified. Given this background, experience was carried out to investigate the shear behavior of RC beams containing corroded stirrups. Investigation results indicate that if the percentage local maximum mass loss is below 35%, there is little influence on the load-carrying mechanism. The concrete shear resistance seems to change little and the shear capacity can be calculated by just taking into consideration the reduction in stirrup shear resistance. It is also found that the anchorage conditions of the stirrups have a predominant influence on the shears of RC beams.


2006 ◽  
Vol 33 (8) ◽  
pp. 933-944 ◽  
Author(s):  
H El Chabib ◽  
M Nehdi ◽  
A Saïd

The exact effect that each of the basic shear design parameters exerts on the shear capacity of reinforced concrete (RC) beams without shear reinforcement (Vc) is still unclear. Previous research on this subject often yielded contradictory results, especially for reinforced high-strength concrete (HSC) beams. Furthermore, by simply adding Vc and the contribution of stirrups Vs to calculate the ultimate shear capacity Vu, current shear design practice assumes that the addition of stirrups does not alter the effect of shear design parameters on Vc. This paper investigates the validity of such a practice. Data on 656 reinforced concrete beams were used to train an artificial neural network model to predict the shear capacity of reinforced concrete beams and evaluate the performance of several existing shear strength calculation procedures. A parametric study revealed that the effect of shear reinforcement on the shear strength of RC beams decreases at a higher reinforcement ratio. It was also observed that the concrete contribution to shear resistance, Vc, in RC beams with shear reinforcement is noticeably larger than that in beams without shear reinforcement, and therefore most current shear design procedures provide conservative predictions for the shear strength of RC beams with shear reinforcement.Key words: analysis, artificial intelligence, beam depth, compressive strength, modeling, shear span, shear strength.


Sign in / Sign up

Export Citation Format

Share Document