Shear Strength of BC-Soil Admixed with Lime and Bio-Enzyme

2019 ◽  
Vol 969 ◽  
pp. 327-334
Author(s):  
C. Jairaj ◽  
M.T. Prathap Kumar ◽  
H. Muralidhara

This BC Soil are expansive in nature and are problematic because of low shear strength and high compressibility. Review of literatures have proven that addition of lime imparts high strength with a corresponding reduction in swell of BC soils. In addition, Bio-enzymes have also been found to play a key role as activators in improving the characteristics of clayey soils such as BC soil. Development and use of non-traditional ground improvement techniques such as bio-enzymes in combination with lime for soil stabilization helps to reduce the cost and the detrimental effects on the soil environment. In the present study lime and bio-enzymes were used as soil stabilizing agents. Compaction test results on BC soil admixed with different percent of lime indicated that 3% addition lime gives higher maximum dry density of 17kN/m3 with OMC of 21% compare to other addition of lime percentages. Keeping 3% of lime as optimum lime content(OLC), BC Soil was admixed with different dosages of Bio-enzymes 25ml/m3, 50ml/m3, 100 ml/m3,150ml/m3, and 200ml/m3 along with OLC was tested for compaction and unconfined compressive strength(UCC). Further UCC test was carried out for different curing period of 0, 7, 15, 30, and 60 Days to analyse the long term effect of BC soil admixed with bio-enzymes with and without lime content. Morphological and chemical analysis was done by using XRD and SEM analysis, from all the test results it was found that 3%OLC + 75ml/m3 of bio-enzymes for 7 day of curing gives higher UCC of 450 kPa. From the SEM it was found that better bond between particles found to develop in bio-enzyme+ lime admixed BC soil in comparison with lime alone admixed BC soil. XRD studies indicated morphological changes in crystallinity and structure of stabilized BC soil in comparison to BC soil alone.

2021 ◽  
Vol 7 (11) ◽  
pp. 1947-1963
Author(s):  
Sudip Basack ◽  
Ghritartha Goswami ◽  
Hadi Khabbaz ◽  
Moses Karakouzian ◽  
Parinita Baruah ◽  
...  

Soft ground improvement to provide stable foundations for infrastructure is national priority for most countries. Weak soil may initiate instability to foundations reducing their lifespan, which necessitates the adoption of a suitable soil stabilization method. Amongst various soil stabilization techniques, using appropriate admixtures is quite popular. The present study aims to investigate the suitability of bagasse ash and stone dust as the admixtures for stabilizing soft clay, in terms of compaction and penetration characteristics. The studies were conducted by means of a series of laboratory experimentations with standard Proctor compaction and CBR tests. From the test results it was observed that adding bagasse ash and stone dust significantly upgraded the compaction and penetration properties, specifically the values of optimum moisture content, maximum dry density and CBR. Comparison of test results with available data on similar experiments conducted by other researchers were also performed. Lastly, a study on the cost effectiveness for transport embankment construction with the treated soils, based on local site conditions in the study area of Assam, India, was carried out. The results are analyzed and interpreted, and the relevant conclusions are drawn therefrom. The limitations and recommendations for future research are also included. Doi: 10.28991/cej-2021-03091771 Full Text: PDF


2018 ◽  
Vol 162 ◽  
pp. 01020 ◽  
Author(s):  
Nahla Salim ◽  
Kawther Al-Soudany ◽  
Nora Jajjawi

All structures built on soft soil may experience uncontrollable settlement and critical bearing capacity. This may not meet the design requirements for the geotechnical engineer. Soil stabilization is the change of these undesirable properties in order to meet the requirements. Traditional methods of stabilizing or through in-situ ground improvement such as compaction or replacement technique is usually costly. Now a safe and economic disposal of industrial wastes and development of economically feasible ground improvement techniques are the important challenges being faced by the engineering community. This work focuses on improving the soft soil brought from Baghdad by utilizing the local waste material for stabilization of soil, such as by using “Nylon carry bag’s by product” with the different percentage and corresponding to 1 %, 3% and 5% (the portion of stabilizer matters to soil net weight) of dried soil. The results indicated that as Nylon’s fiber content increases, the liquid limit decreases while the plastic limit increases, so the plasticity index decreases. Furthermore, the maximum dry density decreases while, the optimum moisture content increases as the Nylon’s fiber percentage increases. The compression index (decreases as the Nylon’s fiber increases and provides a maximum of 43% reduction by adding 5% nylon waste material. In addition, the results indicated that, the undrained shear strength increases as the nylon fiber increases.


2014 ◽  
Vol 695 ◽  
pp. 738-741
Author(s):  
Azhani Zukri ◽  
Nadiatul Adilah Ahmad Abdul Ghani

This study involves the clay sample which is taken from Kampung Kedaik Asal, Rompin site and evaluation of its properties in natural state and after stabilization. The main objectives of this paper is to estimate the optimum lime content (OLC) needed to stabilize the soil by using Eades-Grim pH Test, to determine the optimum moisture content (OMC) and maximum dry density (MDD) of the treated soil by Standard Proctor Test and also the strength value of the soil specimens with different percentages of lime content corresponding with different curing period by Unconfined Compressive Strength (UCS) Test. From this study, the optimum amount to stabilize the clay soil and minimum amount of lime required to stabilize the soil pH level to 12 is 5%. The results showed that addition of lime decreased the maximum dry density (MDD) and increased the optimum moisture content (OMC). Unconfined compressive test on 48 sets of samples has been carried out for 7, 14 and 28 days of curing with different lime contents such as 5%, 7% and 9%. The highest unconfined compressive strength (UCS) achieved is 321 kN/m2 for clay stabilized with 9% lime content cured at 28 days. From the test results, it was found that the longer the immersion of curing period with higher lime content, the greater the compressive strength of the specimen.


2021 ◽  
Vol 889 (1) ◽  
pp. 012005
Author(s):  
Maninder Singh ◽  
Sachin Kamboj ◽  
Kunal Jain ◽  
S.K. Singh

Abstract The subgrade is the foundation of pavement. The conventional method of replacing weak soil with good soil can cause an increase in the cost of a project. Due to this reason ground improvement techniques are much popular nowadays. The major goal of this research work is to compare California Bearing Ratio (CBR) values of the virgin soil and soil reinforced with coir geotextile in one layer and a combination of two layers at different heights from the top surface of the soil. To see the change in CBR values one layer of coir geotextile was reinforced at three different heights (i.e., H/3; H/2 and 2H/3). After that, the effect on CBR values by reinforcement of combination of two layers of coir geotextile at different heights (i.e., H/3 and H/2; H/2 and 2H/3; and H/3 and 2H/3) from the top surface of the soil was studied. Thereafter, the soil is replaced by various percentages of marble dust ranging from 10% to 25% with an increment of 5% and again CBR values of soil samples reinforced with one layer of coir geotextile and a combination of two layers of geotextile at three different heights were compared with virgin soil. The test results reviewed that the maximum dry density (MDD) decreased and optimum moisture content (OMC) increased with the replacement of marble dust in the soil. The CBR test results specify an enhancement of the value of CBR with the addition of coir geotextile and marble dust. The maximum value of CBR is obtained when one layer of coir geotextile was introduced at the height of H/3 and in the case of a combination of two layers of coir geotextile maximum CBR values is obtained when the coir geotextile was introduced at a height of H/3 and 2H/3 from the top surface of the soil.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Foad Buazar

Abstract This study reports the synthesis and potential application of biocompatible silica nanoparticles for subgrade soil stabilization. Nanosilica preparation as a major component from wheat husk ash is systematically studied and confirmed by FTIR, ICP, XRD, and TEM analyses. The produced biogenic nanosilica showed an amorphous structure with an average size of 20 nm. Upon loading various green nanosilica contents, our results show an improvement in the key parameters including Atterberg’s limits, maximum dry density, optimum water content, and shear strength of treated soil. Under optimal loading condition, the nanosilica-mediated soil analyses reveal a significant increase in the plastic and liquid limits by factors of 1.60 and 1.24 whereas plasticity index is declined by a factor of 0.78 rather than untreated soil specimen. The treated soil demonstrates a superior increase in the angle of internal friction, cohesion, shear strength, and maximum dry unit weight by factors of 2.17, 3.07, 2.21 and 1.5, respectively. The California Bearing Ratio (CBR) strength of nanosilica-cured soil presents a substantial increase by a factor of 5.83 higher than the corresponding original subgrade soil. We obtained the maximum increase in strength parameters of modified soil at the optimum biogenic nanosilica content of 1.5%.


2021 ◽  
Vol 50 (11) ◽  
pp. 3181-3191
Author(s):  
Ghasem Norouznejad ◽  
Issa Shooshpasha ◽  
Seyed Mohammad Mirhosseini ◽  
Mobin Afzalirad

It is well known that in geotechnical engineering, soil stabilization using cement is one of the appropriate approaches for enhancing soil characteristics. With respect to zeolite, its impact on the characteristics of cemented soil has not been fully evaluated. Thus, in the current research, a set of laboratory tests including standard Proctor compaction and direct shear tests (DSTs) considering four cement contents (2, 4, 6, and 8% of sand dry weight) and four zeolite contents (0%, 30%, 60%, and 90% of cement percentage as a replacement material) was carried out. The results indicated that the zeolite reduced Maximum Dry Density (MDD) while it increased value of Optimum Moisture Content (OMC) of cemented sand. Through the DSTs, it has been found that the replacement of cement by zeolite up to 30%, leads to the highest values of shear strength parameters due to the occurrence of pozzolanic and chemical reactions, particularly the production of higher amounts of calcium aluminate and calcium silicate hydrates in comparison with zeolite-free samples.


2021 ◽  
Vol 42 (3) ◽  
Author(s):  
Sara Mansouri ◽  
Mehran Nasiri ◽  
Amir Modarres

Many pozzolans are waste products from industrial processes. Every year a huge amount of coal waste is gathered from the coal washing plant in the Hyrcanian forests of Iran. These materials can be used for soil stabilization in construction and maintenance projects of forest roads. This paper aims to (a) investigate the role of coal waste (CW) as a soil stabilizer and (b) determine the changes in soil specification regarding the environmental pollution in different combinations of materials (soil, lime (4 and 6%) and CW (3, 6, 9 and 12%)). For this purpose, different technical and environmental analysis and laboratory tests were performed. Technical tests showed that the soil liquid limit and maximum dry density decreased with an increase in lime and CW contents. Addition of CW could increase the soil CBR, UCS and OMC. According to XRD test, the addition of CW and lime can increase the size of crystals in stabilized soil samples. Environmental analysis showed that the use of stabilizer significantly reduced the concentration of heavy metals such as Cd, Cr and Pb. Also, all of the metal concentrations leached from samples satisfied the required criteria, but the addition of lime and CW increased the concentration of N, P, and K. These changes can increase the invasive species consistent with calcareous soil conditions along the roads. According to the results, the combination of coal waste and lime can be one of the best methods for in situ remediation. It would, however, be better to use a minimum amount of stabilizer in pavement layers of access roads due to environmental sensitivity.


2021 ◽  
Vol 9 (1) ◽  
pp. 16-20
Author(s):  
Iyad Alkroosh ◽  
Ali Al-Robay ◽  
Prabir Sarker ◽  
Saif Alzabeebee

This paper investigates the influence of sand content on the mechanical behavior of a low plasticity clay that collected from south of Iraq (Sumer town). Samples have been prepared with sand contents of 0%, 10%, 20%, 30%, and 40% of the clay weight. Standard Proctor and unconfined compression tests have been carried out and the optimum moisture content, maximum dry density, and undrained shear strength have been determined. The results show a gradual increasing trend of the maximum dry density with the increase of the sand content up to 30%. The highest dry density reaches 1.90 g/cm3 corresponding to an optimum moisture content of 12%. In addition, this paper shows that the undrained shear strength is inversely proportional to the increase of the percentage of sand. The results of this work provide a useful addition to the literature regarding the behaviour or low plasticity clay-sand mixture.


2018 ◽  
Vol 34 ◽  
pp. 01012 ◽  
Author(s):  
Mohammed Ali Mohammed Al-Bared ◽  
Aminaton Marto ◽  
Indra Sati Hamonangan Harahap ◽  
Fauziah Kasim

Recycled blended ceramic tiles (RBT) is a waste material produced from ceramic tile factories and construction activities. RBT is found to be cost effective, sustainable, environmental-friendly and has the potential to be used as an additive in soft soil stabilization. Recent reports show that massive amounts of RBT are dumped into legal or illegal landfills every year consuming very large spaces and creating major environmental problems. On the other hand, dredged marine clay obtained from Nusajaya, Johor, Malaysia has weak physical and engineering characteristics to be considered as unsuitable soft soil that is usually excavated, dumped into landfills and replaced by stiff soil. Hence, this study investigates the suitability of possible uses of RBT to treat marine clay. Laboratory tests included Standard proctor tests and Atterberg limits tests. The plasticity of marine clay was evaluated by adding 10%, 20%, 30% and 40% of 0.3 mm RBT. In addition, the compaction behaviour of treated marine clay was compared by adding two different sizes (0.3 mm and 1.18 mm diameter) of RBT. For both coarse and fine sizes of RBT, 10%, 20%, 30% and 40% of the dry weight of the soft clay were added. The mixture of each combination was examined in order to evaluate the Maximum Dry Density (MDD) and the optimum moisture content (OMC) for the treated soft clay. MDD and OMC for soft untreated samples were 1.59 Mg/m3 and 22%, respectively. Treated samples with 10%, 20%, 30% and 40% of 0.30 mm size RBT resulted in a significant reduction of OMC ranged from 19 to 15% while MDD resulted in increment ranged from 1.69 to 1.77 Mg/m3. In addition, samples treated with 10%, 20%, 30% and 40% of 1.18 mm size RBT resulted in major reduction of OMC ranged from 15 to 13.5% while MDD increased effectively from 1.75 to 1.82 Mg/m3. For all mix designs of soft clay-RBT, MDD was gradually increasing and OMC was sharply reducing with further increments of both sizes of RBT.


2012 ◽  
Vol 204-208 ◽  
pp. 1633-1637
Author(s):  
Yong Bing Wang ◽  
Guo Qiang Ying ◽  
Jian Lin Hu ◽  
Hua Wei Wei ◽  
Qian Zhang

In order to study the factors which influence the inorganic binder stabilized material’s compaction test results, different recycled material content therefore different reclaimed gradation mixtures are tested while varying the amount of cement. The experiment results show that contents of the recycled base material and the recycled surface material on the compaction test results are determined by the change of their density and water absorption ratio. Dry density of the recycled mixture increases with the increase of the reclaimed base material density. Low water absorption ratio of the recycled material reduces the reclaimed mixture’s optimum moisture content. Density of the reclaimed wearing surface material reduces the maximum dry density of the reclaimed mixture because the old wearing surface material has lower density. Its low water absorption reduces the optimum moisture content of the recycled mixture. Influence of cement content on compaction test results is the increase of the cement content can enhance the maximum dry density and optimum moisture content of the recycled material. Through the analysis of the results of the compaction test, the key factors in the recycled material compaction test are unveiled.


Sign in / Sign up

Export Citation Format

Share Document