Natural Vibration Characteristics of Long-Span Suspension Bridge with CFRP Cables

2010 ◽  
Vol 168-170 ◽  
pp. 1708-1711
Author(s):  
Hong Yu Zheng ◽  
Huai Yan Jiang ◽  
Zhi Tao Lu

A non-corrosion, high strength, light weight material – carbon fiber reinforced polymer (CFRP) is introduced to replace steel as cable system in long-span suspension bridge for improving loading efficiency, reducing maintenance cost, enlarging the span of suspension bridge. The natural vibration characteristics of such new suspension bridge with CFRP cables are investigated by means of finite element in this paper. Two 2000m-span suspension bridges with steel cables and CFRP cables respectively are designed, analyzed, verified and compared. The analysis results provide a picture of the changes in natural vibration characteristics and the wind stability and earthquake-resistant behavior are briefly discussed if CFRP cables were applied.

2014 ◽  
Vol 633-634 ◽  
pp. 1263-1266
Author(s):  
Huang Yu

For modern long-span bridges, both the optimization of aerodynamic shape and the increase of torsional stiffness according to the result of the wind tunnel experiment could avoid the flutter instability.Vortex-inducedvibration with relatively large amplitude happens easily at low wind speeds. In this paper, based on wind tunnel experiment, by studying on the vortex-induced vibration characteristics of a long-span suspension bridge with single cable plane, aerodynamic measures for easing the vortex-induced vibration are given.


2011 ◽  
Vol 243-249 ◽  
pp. 1557-1560 ◽  
Author(s):  
Hong Yu Zheng ◽  
Huai Yan Jiang ◽  
Zhi Tao Lu

A non-corrosion, high strength, light weight material – carbon fiber reinforced polymer (CFRP) is introduced to replace steel as cable system in long-span suspension bridge for improving loading efficiency, reducing maintenance cost, enlarging the span of suspension bridge. Because of the transverse weakness of CFRP, traditional cable saddle is not suitable. The contact forces between main cable and cable saddle slot under final state are investigated with a simplified analytical method. According to the mechanical characteristics of CFRP and the formulas deduced, the design suggestion of cable saddle for CFRP main cable of long-span suspension bridge are proposed.


2006 ◽  
Vol 11 (3) ◽  
pp. 293-318 ◽  
Author(s):  
M. Zribi ◽  
N. B. Almutairi ◽  
M. Abdel-Rohman

The flexibility and low damping of the long span suspended cables in suspension bridges makes them prone to vibrations due to wind and moving loads which affect the dynamic responses of the suspended cables and the bridge deck. This paper investigates the control of vibrations of a suspension bridge due to a vertical load moving on the bridge deck with a constant speed. A vertical cable between the bridge deck and the suspended cables is used to install a hydraulic actuator able to generate an active control force on the bridge deck. Two control schemes are proposed to generate the control force needed to reduce the vertical vibrations in the suspended cables and in the bridge deck. The proposed controllers, whose design is based on Lyapunov theory, guarantee the asymptotic stability of the system. The MATLAB software is used to simulate the performance of the controlled system. The simulation results indicate that the proposed controllers work well. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a velocity feedback controller.


2019 ◽  
Vol 9 (15) ◽  
pp. 3168
Author(s):  
Bingbing San ◽  
Yunlong Ma ◽  
Zhi Xiao ◽  
Dongming Feng ◽  
Liwei Yin

This work investigates the natural vibration characteristics of free-form shells when considering the influence of uncertainties, including initial geometric imperfection, shell thickness deviation, and elastic modulus deviation. Herein, free-form shell models are generated while using a self-coded optimization algorithm. The Latin hypercube sampling (LHS) method is used to draw the samplings of uncertainties with respect to their stochastic probability models. ANSYS finite element (FE) software is adopted to analyze the natural vibration characteristics and compute the natural frequencies. The mean values, standard deviations, and cumulative distributions functions (CDFs) of the first three natural frequencies are obtained. The partial correlation coefficient is adopted to rank the significances of uncertainty factors. The study reveals that, for the free-form shells that were investigated in this study, the natural frequencies is a random quantity with a normal distribution; elastic modulus deviation imposes the greatest effect on natural frequencies; shell thickness ranks the second; geometrical imperfection ranks the last, with a much lower weight than the other two factors, which illustrates that the shape of the studied free-form shells is robust in term of natural vibration characteristics; when the supported edges are fixed during the shape optimization, the stochastic characteristics do not significantly change during the shape optimization process.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hao Tian ◽  
Jiji Wang ◽  
Sugong Cao ◽  
Yuanli Chen ◽  
Luwei Li

This paper presents a reliability analysis to assess the safety of corroded main cables of a long-span suspension bridge. A multiscale probability model was established for the resistance of the main cables considering the length effect and the Daniels effect. Corrosion effects were considered in the wire scale by relating the test results from accelerated corrosion tests to the corrosion stages and in the cable scale by adopting a corrosion stage distribution of the main cable section in NCHRP Report 534. The load effects of temperature, wind load, and traffic load were obtained by solving a finite element model with inputs from in-service monitoring data. The so-obtained reliability index of the main cables reduces significantly after operation for over 50 years and falls below the design target value due to corrosion effects on the mechanical properties of the steel wire. Multiple measures should be taken to delay the corrosion effects and ensure the safety of the main cables in the design service life.


Author(s):  
Takeshi Tokunaga ◽  
Koji Mori ◽  
Hiroko Kadowaki ◽  
Takashi Saito

Abstract A gradient of a blood flow velocity on the surface of a blood vessel is one of the clinical medicine concerns from the view point of prevention of the arteriosclerosis. In previous study, we formulated a relationship between the pressure and a flow velocity based on the coupled wave theory of elastic pipes and Newtonian fluids [1]. In addition, a flow velocity distribution and a wall shear stress are estimated by using the blood pressure data, which are non-invasively obtained by the tonometry method. This method is quasi-analytical method to apply the coupled wave theory for industrial flow field inside steel pipes proposed by Urata [4] to blood vessel, and has the advantage of systematic estimator compared with the numerical calculation. However, the coupled wave theory has applied to the elastic pipes that were assumed to be infinitely long. In addition, a single wave was assumed to be dominant within the elastic pipes and the Newtonian fluids. Therefore, in order to apply various length vessels in clinical field, the boundary of the blood vessels that varies from site to site, and the natural vibration characteristics that depend on the boundary conditions, could not be reflected in the wall shear stress estimation. In general, in order to solve the forced vibration with the boundary condition, it is necessary to clarify natural frequency and natural mode as natural vibration characteristics of structure. In this study, we introduce the spring supported elastic pipes to the coupled wave theory and formulated a relationship between the natural vibration characteristics and the boundary conditions. In this proposed method, the spring-supported elastic pipe has a feature that can be treated as an arbitrary boundary condition of an artery by giving an appropriate spring coefficients. Therefore, it is easy to apply to various types of blood vessels clinically. By investigating the natural vibration characteristics of blood vessels that varies from site to site, it may be possible to clarify fluctuations of blood flow in response to blood pressure with some frequency-bands. In addition, natural angular frequencies and natural modes of the spring supported elastic pipes and the Newtonian fluids were estimated for general blood vessel based on the coupled wave theory. In the result, the natural angular frequencies and the natural modes that reflect the clinical vibration characteristics to some extent can be estimated. On the other hand, particular modes may not reflect boundary condition, and further examination of the relationship between natural vibration characteristics and boundary condition is needed.


2020 ◽  
Vol 10 (21) ◽  
pp. 7666
Author(s):  
Ngoc-Son Dang ◽  
Gi-Tae Rho ◽  
Chang-Su Shim

Long-span suspension bridges require accumulated design and construction technologies owing to challenging environmental conditions and complex engineering practices. Building information modeling (BIM) is a technique used to federate essential data on engineering knowledge regarding cable-supported bridges. In this study, a BIM-based master digital model that uses a data-driven design for multiple purposes is proposed. Information requirements and common data environments are defined considering international BIM standards. A digital inventory for a suspension bridge is created using individual algorithm-based models, and an alignment-based algorithm is used to systematize them and generate the entire bridge system. After assembling the geometrical model, metadata and various BIM applications are linked to create the federated master model, from which the mechanical model is derived for further stages. During the construction stage, the advantage of this digital model lies in its capability to perform efficient revisions and updates with respect to varying situations during the erection process. Stability analyses of the bridge system can be performed continuously at each erection step while considering the geometric control simulation. Furthermore, finite element analysis models for any individual structural member can be extracted from the master digital model, which is aimed at estimating the actual behavior of bridge members. In addition, a pilot master digital model was generated and applied to an existing suspension bridge; this model exhibited significant potential in terms of bridge data generation and manipulation.


2005 ◽  
Vol 21 (2) ◽  
pp. 169-184 ◽  
Author(s):  
Myung Jo Jhung ◽  
Young Hwan Choi ◽  
Hho Jung Kim ◽  
Kyeong Hoon Jeong

Sign in / Sign up

Export Citation Format

Share Document