Binary Superposition Mix Design Method for SFRC Part II: Flexural Strength and Toughness

2010 ◽  
Vol 168-170 ◽  
pp. 2191-2194 ◽  
Author(s):  
Hong Yuan Huo ◽  
Shun Bo Zhao ◽  
Li Sha Song ◽  
Chen Xiao Song

The paper is the second part of the study on binary superposition mix design method for steel fiber reinforced concrete (SFRC), which introduces the experimental results of flexural tensile strength and flexural toughness of SFRC. Based on the test, the effects of fraction of steel fiber by volume and average thickness of cement paste wrapping steel fibers on flexural tensile strength and toughness of SFRC are analyzed. The effect coefficient of steel fiber on flexural tensile strength of SFRC is suggested on the basis of the formula specified in current technical specification for fiber reinforced concrete structures. The flexural toughness of SFRC raises with the increase of fraction of steel fiber by volume, but less affected by the average thickness of cement paste wrapping steel fibers.

2010 ◽  
Vol 168-170 ◽  
pp. 2186-2190 ◽  
Author(s):  
Shun Bo Zhao ◽  
Hong Yuan Huo ◽  
Chen Xiao Song ◽  
Li Sha Song

The binary superposition mix design method is constructed to quantitatively calculate the compositions of steel fiber reinforced concrete (SFRC), which brings into sufficient cement paste wrapping steel fibers to strengthen the boundary surfaces of steel fibers with base concrete. The principle of the method is firstly introduced. The experiments were carried out to evaluate the validity of the method. In the experiment, the cubic and axial compressive strength as well as the splitting tensile strength of SFRC affected by the fraction of steel fiber by volume and the average thickness of cement paste wrapping steel fibers were tested. The results are analyzed on the basis of former studies specified in the current technical specification for fiber reinforced concrete structures, which show that the larger strengths especial the splitting tensile strength of SFRC in grade CF50 can be got by the method, but the less splitting tensile strength of SFRC in grade of CF40 should be further studied.


2013 ◽  
Vol 438-439 ◽  
pp. 290-294 ◽  
Author(s):  
Hong Yuan Huo ◽  
Li Sha Song ◽  
Li Sun ◽  
Chen Jie Cao

Test of basic properties of steel fiber reinforced concrete (SFRC) was carried out to further study the validity of the binary superposition mix proportion method. The strength grades of SFRC were CF40, CF50 and CF60. The key parameters of the study were the fraction of steel fiber by volume, the thickness of cement paste wrapping steel fibers and the water to cement ratio. The workability of fresh SFRC was measured firstly to satisfy the construction requirement. The compressive strength, tensile strength and flexural-tensile strength of SFRC were tested simultaneously. Based on the test data, the changes of above basic properties of SFRC are analyzed in view of the effects of the fraction of steel fiber by volume and the thickness of cement paste wrapping steel fibers. It shows that the optimum thickness of cement past wrapping steel fibers is 0.8mm. The influencing coefficients in formulas for calculating tensile strength and flexural-tensile strength of SFRC specified in the current technical specification are given out.


2012 ◽  
Vol 204-208 ◽  
pp. 3740-3743
Author(s):  
Wen Cui ◽  
Qin Luo

Mix design of the steel fiber reinforced concrete was analyzed based on the engineering conditions. It was indicated by comparing with the strength values of steel fiber reinforced concrete (CF40) and ordinary concrete (C40) that the tensile strength of the steel fiber reinforced concrete increased about 70%, the compressive strength increased about 10%, the initial cracking strength increased about 150%.The reasonable construction technologies were used in mixing, transportation, pouring, vibrating and curing of the steel fiber reinforced concrete in order to ensure quality of the construction.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 251
Author(s):  
Xinxin Ding ◽  
Changyong Li ◽  
Minglei Zhao ◽  
Jie Li ◽  
Haibin Geng ◽  
...  

Due to the mechanical properties related closely to the distribution of steel fibers in concrete matrix, the assessment of tensile strength of self-compacting steel fiber reinforced concrete (SFRC) is significant for the engineering application. In this paper, seven groups of self-compacting SFRC were produced with the mix proportion designed by using the steel fiber-aggregates skeleton packing test method. The hooked-end steel fibers with length of 25.1 mm, 29.8 mm and 34.8 mm were used, and the volume fraction varied from 0.4% to 1.4%. The axial tensile test of notched sectional prism specimen and the splitting tensile test of cube specimen were carried out. Results show that the axial tensile strength was higher than the splitting tensile strength for the same self-compacting SFRC, the axial tensile work and toughness was not related to the length of steel fiber. Finally, the equations for the prediction of tensile strength of self-compacting SFRC are proposed considering the fiber distribution and fiber factor, and the adaptability of splitting tensile test for self-compacting SFRC is discussed.


2012 ◽  
Vol 238 ◽  
pp. 33-36 ◽  
Author(s):  
Chang Yong Li ◽  
Li Sha Song ◽  
Li Sun ◽  
Chen Jie Cao ◽  
Tong Xing

This paper introduces the test results of the flexural performance of CF40 steel fiber reinforced concrete (SFRC) designed by the binary superposition mix design method. The flexural strength and flexural load ~ deflection curves were got from the test SFRC specimens with the different fraction of steel fiber by volume and the different thickness of cement paste wrapping steel fibers. The effects of the fraction of steel fiber by volume and the thickness of cement paste on the flexural strength and toughness of SFRC are analyzed. It is demonstrated that the flexural toughness of SFRC increases with the increase of the fraction of steel fiber by volume, the reasonable thickness of cement paste wrapping steel fibers is 1.0mm.


Author(s):  
Mehrdad Abdi Moghadam ◽  
Ramezan Ali Izadifard

AbstractThe tensile strength of concrete has a great impact on the performance of concrete structures, especially for members exposed to high temperatures. The inclusion of steel fibers in concrete is one of the measures to retrieve the loss of tensile strength. The previous equations for the prediction of the tensile strength, are valid for conventional concrete and can predict the tensile strength after high-temperature exposure. Therefore, they are unsatisfactory for forecasting the tensile strength of plain and steel fiber reinforced concrete under high-temperature exposure. To establish a model that can effectively simulate the tensile strength of plain concrete, specimens with compressive strengths of 20–80 MPa are tested. Then by performing tensile strength tests on the specimens containing various content of steel fiber, an equation for prediction of the tensile strength at the ambient temperature is proposed. Meanwhile, the tensile strength tests are conducted at temperatures of 100–800 °C to develop a model for high-temperature exposure. The results indicate that an increase of compressive strength from 20 to 84 improves the tensile strength by 169.4%, and the incorporation of 0.25 and 0.5% of steel fibers can improve the tensile strength of normal concrete by 58.48 and 80.29% on average at the tested temperatures, respectively. Moreover, the proposed model is able to predict the tensile strength of normal and steel fiber reinforced concrete exposed to high temperatures accurately. This equation would help a wider application of the steel fibers in the construction industry with the risk of a fire accident.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
In-Hwan Yang ◽  
Changbin Joh ◽  
The Quang Bui

The tensile behavior of ultrahigh-performance fiber-reinforced concrete (UHPFRC) depends on the dispersion and orientation of steel fibers within the concrete matrix. The uneven dispersion of randomly oriented steel fibers in concrete may cause differences in the tensile behavior between material testing specimens and beams. Therefore, in this study, the tensile behavior was investigated by fitting the analysis result of the moment-curvature curve to the experimental result of a UHPFRC beam. To this end, three UHPFRC mixtures with different compressive strengths were fabricated to test the material properties and flexural behavior of UHPFRC beams. Both a single type of steel fiber and a combination of steel fiber types were used with volume fractions of 1.0% and 1.5%, respectively, in the three mixtures. Based on the design recommendations, the material properties of UHPFRC were modeled. The results ultimately show that by fitting the analysis results to the experimental results of the moment-curvature curves, the tensile strength of UHPFRC beams can be reasonably estimated.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Sign in / Sign up

Export Citation Format

Share Document