Biodegradation of Mixed Cultures on Azo Dyes and the Bioaugmentation Effects of the Activated Sludge System

2011 ◽  
Vol 183-185 ◽  
pp. 301-305
Author(s):  
Feng Xu

The biodegradation of mixed cultures was analyzed. The paper studied the effects of treat condition (static and shaking), concentration of dye, activities of oxidative enzymes (LiP, laccase and Manganese Peroxidase) and the bioaugmentation effects of the activated sludge system. The results showed that mixed cultures were able to degrade Reactive Brilliant Red X-3B and Direct Blue-6 (100 mg/L) completely within 32 h in shaking condition. As the initial concentration of Reactive Brilliant Red X-3B increased from 100mg/L to 900mg/L, the decolorization rate still maintain a high level only decreased from 99.3% to 83.5%. Induction in the activity of oxidative enzymes (LiP, laccase and Manganese Peroxidase) represented their role in degradation. In augmented experiments, it showed that in the control SBR system with the CODCr of the effluent was in three average levels 848, 1228, and 1550 mg/L, the CODCr degradation rates were 42.3%, 32.8% and 19.7%. In the augmented system treated with the same effluent, the degradation rates of augmented system were 86.5%, 71.8% and 59.8% respectively. It showed that the activated sludge was augmented by the mixed cultures which made the system to be more stable and improve impact resistance.

2013 ◽  
Vol 684 ◽  
pp. 226-229
Author(s):  
Feng Xu ◽  
Jin Chuan Gu ◽  
Jin Bao

The paper studied the degradation rate of single strain, the microorganisms agent compatibility and the bioaugmentation effects of the activated sludge system. The results showed that 10 strains screened from drilling site were able to degrade drilling wastewater. Confirm the optimal ratio of strains’ compatibility through orthogonal experiment. In augmented experiments, it showed that in the control SBR system with the COD of the effluent was in three different average levels (with two load shock), the COD degradation rates were 21.4%, 22.8% and 6.9%. In the augmented system treated with the same effluent, the degradation rates of augmented system were 64.8%, 62.78% and 66.9% respectively. It showed that the activated sludge was augmented by the mixed cultures which made the system to be more stable and improve impact resistance.


2020 ◽  
Vol 35 (3) ◽  
pp. 457-463
Author(s):  
Huixia Lan ◽  
Xiangzhi Wang ◽  
Shixin Qi ◽  
Da Yang ◽  
Hao Zhang

AbstractUsing the acclimated activated sludge from the pulping middle-stage effluent, the effect of pH shock on the micro-oxygen activated sludge system with a nano-magnetic powder/graphene oxide composite was studied. The results showed that the removal rates of chemical oxygen demand (CODCr) and ultraviolet adsorption at 254 nm (UV254) decreased. Also, the sludge settling performance was poor due to the impact of pH, but the impact resistance of nano-magnetic powder/graphene oxide group (MGO group) was higher and the recovery was faster. Results of high throughput sequencing indicated that the diversity of microbial community was reduced by the impact of pH, but it was significantly higher in MGO group than in the blank group. The dominant bacteria after pH shock or recovery in both of the system had a large difference. The percentage of the dominant bacteria in the MGO group was higher than that in the blank group. The MGO group had higher electron transfer system (ETS) activity which made the system having a strong pH impact resistance.


2016 ◽  
Vol 74 (5) ◽  
pp. 1227-1234 ◽  
Author(s):  
Dorota Gendaszewska ◽  
Ewa Liwarska-Bizukojc

The effects of 1-decyl-3-methylimidazolium bromide on activated sludge process and microbial composition were investigated. Ionic liquid (IL) was dosed continuously to the laboratory activated sludge system at an influent concentration from 1 to 20 mg l−1 for about 1 month. As compared to the control test, mean values of degree of chemical oxygen demand removal and degree of biochemical oxygen demand removal were almost remaining constant at a high level, equaling 92.6% and 98.1%, respectively. In addition, no influence of IL on size and shape of flocs was observed. The values of the sludge biotic index indicate that sludge exposed on IL was stable and very well colonized with good biological activity. Increases in Proteobacteria (mainly Variovorax sp., Vogesella sp., Hydrogenophaga sp.), Bacteroidetes (mainly Lewinella sp., Haliscomenobacter sp., Runella sp.) and Nitrospirae were detected in sludge adapted to IL compared to the control system. The results showed that activated sludge can adapt to IL present in wastewater.


2016 ◽  
Vol 9 (2) ◽  
Author(s):  
Dinda Rita K. Hartaja ◽  
Imam Setiadi

Generally, wastewater of nata de coco industry contains suspended solids and COD were high, ranging from 90,000 mg / l. The high level of of the wastewater pollutants, resulting in nata de coco industry can not be directly disposed of its wastewater into the environment agency. Appropriate technology required in order to process the waste water so that the treated water can meet the environmental quality standards that are allowed. Designing the waste water treatment plant that is suitable and efficient for treating industrial wastewater nata de coco is the activated sludge process. Wastewater treatment using activated sludge process of conventional (standard) generally consists of initial sedimentation, aeration and final sedimentation.Keywords : Activated Sludge, Design, IPAL


2018 ◽  
Author(s):  
Gede H Cahyana

As a part of activated sludge system, oxidation ditch has a special form like a canal without end point. Rotor is used to diffuse oxygen from air to the water.


1974 ◽  
Vol 9 (1) ◽  
pp. 235-249 ◽  
Author(s):  
S.G. Nutt ◽  
K.L. Murphy

Abstract Conventional wastewater parameters are accepted as inadequate estimates of the condition of activated sludge but numerous other indices have been suggested as specific measurements of the activity and viability of the biomass. Literature in the related fields of microbiology and biochemistry were reviewed in order to select the most appropriate activity parameters for application to a heterogeneous biological material. Modified analytical methods were applied to a well-controlled biological system containing a single predominant bacterial species to evaluate the relative merit of each as an indicator of viability and activity. The potential of each parameter in a complex heterogeneous system was determined by monitoring each index in a bench activated sludge system. The predominant culture studies indicated that the ATP content of the biomass and the dehydrogenase activity were potential indicators of cell viability in a simple system. However, in the complex activated sludge system, only the ATP content showed significant correlation to the organic carbon removal rate.


1994 ◽  
Vol 30 (3) ◽  
pp. 73-78 ◽  
Author(s):  
O. Tünay ◽  
S. Erden ◽  
D. Orhon ◽  
I. Kabdasli

This study evaluates the characterization and treatability of 2,4-D production wastewaters. Wastewaters contain 20000-40000 mg/l COD, 17000-30000 mg/l chloride and pH is around 1.0. Chemical oxidation with hydrogen peroxide provided almost complete COD removal. The optimum conditions are 3:1 H2O2/COD oxidant dosage, 3000 mg/l Fe3+ as catalyst and pH 3. Partial oxidation at 0.5:1 H2O2//COD ratio is also effective providing 67% COD removal. A batch activated sludge system is used for biological treatability. Dilution is needed to maintain a tolerable chloride concentration which increases through COD removal. pH also increased during COD removal. 85% COD removal is obtained for the 50% dilution at an organic loading of 0.3 day‒1 on a COD basis. Completely and partially oxidized wastewaters are also treated in the activated sludge down to 30 mg/l BOD5.


Sign in / Sign up

Export Citation Format

Share Document