Modeling of Thrust Force and Tool Wear and Optimization of Process Parameters in Drilling Nickel-Based Alloy GH536

2011 ◽  
Vol 188 ◽  
pp. 360-363
Author(s):  
M.H. Wang ◽  
Shu Tao Huang

. In this study, the prediction models of thrust force, tool wear and torque in drilling nickel-based alloy GH536 are developed based genetic algorithm and drilling experiments. Tool wear value is used as constraint condition and maximum cutting efficiency as goal to optimize drilling process parameters. In addition, the relationship between tool life and cutting efficiency is analyzed by exploiting the tool wear prediction model. The results of the analysis show that under the condition of efficiency remains unchanged, the tool life can be increased by increasing drilling speed and appropriately reducing feed rate, these results are consistent with the optimized process parameters.

1999 ◽  
Author(s):  
Konstantinos D. Bouzakis ◽  
Spiros Kombogiannis ◽  
Aristomenis Antoniadis ◽  
Nectarios Vidakis

Abstract Tool wear prediction models for gear hobbing were presented in the first part of this paper. To determine the constants of the equations used in these models, fly hobbing experiments with uncoated and coated HSS tools were conducted. Hereby, it was necessary to modify the fly hobbing kinematics from continuous tangential feed to continuous axial feed. The experimental data were evaluated, and correlated to the analytical ones, elaborated through the described digital simulation of the cutting process. The determined constants of the wear laws for the investigated tools were used in a further developed user friendly software, enabling the prediction of the tool wear accomplishment in gear hobbing. On that account the wear development can be precisely foreseen and the tangential shift of the tool is optimized. The open and modular structure of the developed code enables the continuous enrichment of its database with other type of coating and workpiece materials. With the aid of the aforementioned techniques, the superiority of coated HSS tools in comparison to uncoated ones is also quantitatively exhibited.


Author(s):  
Xiaolan Han ◽  
Zhanfeng Liu

Abstract Titanium alloy is a typical hard-to-machine material, and has a relatively expensive material price. For deep-hole tubes made of titanium alloys, the material utilization rate of direct deep-hole drilling is relatively low, especially for large diameter holes. Deep-hole trepanning provides an effective method that reduces manufacturing cost and improves the material utilization which is used on larger diameter bars. In this paper, deep-hole trepanning tests are carried out on the TC10 titanium alloys to resolve the key technical problems. The thrust force and torque, tool wear, and chip morphology are analyzed based on the different process parameters. The results show that appropriate process parameters can remove the chips easily and reduce the thrust force and tool wear. The titanium alloy deep-hole trepanning has a good drilling effect and solves the problem of drilling deep, large diameter holes in titanium alloy tubes, which has practical significance for reducing production cost and improving material utilization.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Zülküf Demir ◽  
Rifat Yakut

The chip slenderness ratio is a vital parameter in theoretical and applicable machining operations. In predrilled drilling operations of AISI 1050 steel alloy, HSS drills were employed, and the effect of the selected parameters on the chip slenderness ratio and also the effect of the chip slenderness ratio on the thrust force, surface roughness, drilled hole delamination, tool wear, and chip morphology were investigated. The major parameters, influential on the chip slenderness ratio, were feed rate and point angle, while spindle speed was too small to be negligible. With increasing the chip slenderness ratio, the thrust force and the tool wear decreased, which resulted in appropriate chip morphology, but there were increases in surface roughness. However, the chip slenderness ratio had no effect on the drilled hole delamination.


2019 ◽  
Vol 9 (01) ◽  
pp. 1-5
Author(s):  
Angga Sateria

Glass fiber reinforced polymer (GFRP)-stainless steel stacks used in the aircraft structural components. The assembly process of this components requires mechanical joining using bolt and nut. The drilling process is commonly used for producing hole to position the bolt correctly. Thrust force and torque are responses that used to evaluate the performance of drilling process. The quality characteristic of these responses are “smaller-is-better.” The aim of this experiment is to identify the combination of process parameters for achieving required multiple performance characteristics in drilling process of GFRP-stainless steel stacks materials. The three important process parameters, i.e., point angle, spindle speed, and feed rate were used as input parameters. Point angle was set at two different levels, whilethe other two were set at three different levels. Hence, a 2 x 3 x 3 full factorial was used as designexperiments. The experiments were replicated two times. The optimization was conducted by using genetic algorithm method. The minimum thrust force and torque could be obtained by using point angle, spindle speed and feed rate of 118o, 2383 rpm, 62 mm/min respectively.


2009 ◽  
Vol 407-408 ◽  
pp. 594-598
Author(s):  
Xiao Qin Wang ◽  
Xing Ai ◽  
Jun Zhao ◽  
Pei Quan Guo

Ti6Al4V is a difficult to machine alloy with low cutting efficiency and server tool wear. A series of orthogonal turning tests with CBN (Cubic Boron Nitride) in higher speed scale was carried out on a CA6140 lathe. The experiential functions of tool life based on orthogonal experiment were developed. The tool wear morphologies were examined by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS), adhesion, diffusion and micro-chipping were the major wear mechanisms of CBN tool. Finally, the cutting parameters of CBN tool in Ti6Al4V dry turning were optimized based on tool life-efficiency contour analysis, in same cutting efficiency, the higher cutting speed and small depth of cut are the better selection, it means that utilization of CBN tool enables the high cutting speed turning of Ti6Al4V.


2019 ◽  
Vol 10 (01) ◽  
pp. 1-7
Author(s):  
Angga Sateria ◽  
Indra Dwi Saputra ◽  
Yuli Dharta

The Particle Swarm Optimization (PSO) method is one of the methods used for multirespon optimization in the manufacturing process. In this research, the material used is Glass fiber reinforced polymer (GFRP) composite material which is stacked with stainless steel material. The machining process used is a drilling process conducted on a vertical CNC machine Brother TC-22A-O. The thrust force and torque is the response used to evaluate the performance of the drilling process. The quality characteristics of this response "the smaller the better". The aim of this study was to identify the combination of process parameters to achieve the performance characteristics required in drilling process the GFRP-SS material using Particle Swarm Optimization methode (PSO). The three process parameters i.e. point angle, spindle speed, and feeding speed is used as a process parameter. Point angle was set at two different levels, while the other two were set at three different levels. Therefore, the 2 x 3 x 3 factorial is used as the experimental design. The experiments were replicated two times. The minimum thrust force and torque could be obtained by using point angle, spindle speed, and feeding speed are 118o, 2330 rpm, and 65 mm/minrespectively.


2018 ◽  
Vol 7 (2) ◽  
pp. 127-131
Author(s):  
Jatinder Singh ◽  
Kulvinder Garg

Presently a-days precision manufacturing has picked up its significance in all assembling industries. The best product dimensions at low cost with minimum time become a measure of concern. The drilling process imparts more than 30% of all the metal removing operations done on a job or assembly. The burr is a plastically deformed material, generated during drilling is unnecessary output and reduces the product acceptability, often lowers the surface quality of the product requires deburring which increases the cost of product. Burr is caused due to improper machining, tooling and environmental parameters. Total elimination of burrs during drilling process is a difficult task but using proper process parameters it can be minimized. In the present experimental study, the optimization of process parameters for minimization of burr formation in drilling process has been carried out for Al6082 plate. The tool type (coated/uncoated), spindle speed, feed rate, and drill diameters were used as the process parameters. Taguchi’s L18 orthogonal has been applied for DOE and drilling of Al6082 plates has been performed using ply-board as a backup support and without using any backup support on CNC drilling machine. The burr height and surface roughness were analyzed and optimized using S/N ratio and ANOVA and the optimum combinations for burr height and surface roughness has been found from S/N plots. The most influencing factors for burr height and surface roughness have been found from ANOVA tables.


2012 ◽  
Vol 566 ◽  
pp. 217-221 ◽  
Author(s):  
Ali Davoudinejad ◽  
Sina Alizadeh Ashrafi ◽  
Raja Ishak Raja Hamzah ◽  
Abdolkarim Niazi

Aluminum alloy is widely used in industry and various researches has been done on machiability of this material mainly due to its low weight and other superior properties. Dry machining is still interesting topic to reduce the cost of manufacturing and environmental contaminations. In present study dry machining of Al 2024 investigated on tool life, tool wear mechanisms, hole quality, thrust force and torque. Different types of high speed steel (HSS) tools utilized at constant feed rate of 0.04 mm/rev and cutting speeds within the range of 28 and 94 m/min. Experimental results revealed that HSCo drills, performed better than HSS drills in terms of tool life and hole quality. The main wear mechanisms which analyzed by scanning electron microscope found abrasive and adhesion wear on flank face, besides, BUE observed at chisel and cutting edges. However tool wear and BUE formation found more significant at high cutting speed. In terms of thrust force, two facet HSCo tools, recorded higher thrust force than four facet HSS drills.


Sign in / Sign up

Export Citation Format

Share Document