Explosive Compaction of Metallic Glass Particles Reinforced Aluminium Matrix Composites

2011 ◽  
Vol 189-193 ◽  
pp. 2472-2476
Author(s):  
Jin Xiang Wang ◽  
Xiao Li Zhang ◽  
Nan Zhou ◽  
Zheng Zhao

In this paper the metallic glass particles reinforced aluminium matrix composites without obvious defects were obtained successfully by explosive compaction of mixed powders. The mass fraction of the amorphous phase is 10%, 15% and 20% respectively in the specimens. The scaning electric microscope micrographs of the composites show that the metallic glass particles are uniformly distributed in the matrix. The x-ray diffraction and differential thermal analysis of the composite specimens show that the amorphous phase is maintained in the composites without crystallization during the compaction. Finally the influences of macro-temperature rise and micro-heat transfer on the crystallization were analyzed.

2014 ◽  
Vol 996 ◽  
pp. 936-943 ◽  
Author(s):  
Guillaume Geandier ◽  
Lilian Vautrot ◽  
Matthieu Salib ◽  
Mickael Mourot ◽  
Moukrane Dehmas ◽  
...  

Composite materials present interesting mechanical properties. The metal provides the toughness and the particles are adding elastic stiffness, strength, hardness and wear resistance. High energy X-ray diffraction has been used to characterize the microstructure evolution of two types of MMCs (titanium and steel matrix) reinforced with TiC particles.Evolutions of mass fraction and mean cell parameters shows the effect of reinforcement on the kinetics and mechanical state of the final composites.


2008 ◽  
Vol 17 (3) ◽  
pp. 096369350801700 ◽  
Author(s):  
D. P. Myriounis ◽  
S. T. Hasan ◽  
T. E. Matikas

During processing, metal matrix attempts to deform and this deformation plays the key role in the microstructural events of segregation and precipitation at the matrix-reinforcement interface. The important aspect of this behaviour is to identify the strengthening micro-characteristics which enhance the material's interphasial reactions in order to improve the bonding properties of the matrix-reinforcement interface. This work focuses on the non-equilibrium segregation which arises due to imbalances in point defect concentrations set up around interfaces during non-equilibrium heat treatment processing of SiC particle reinforced aluminium matrix composites. The important factors affecting the heat treatment process are the temperature, the cooling rate, the concentration of solute atoms and the binding energy between solute atoms and vacancies. Aluminium – silicon – magnesium alloy matrix reinforced with varying amounts of silicon carbide particles were used in this study. Samples in the as-received and heat treated condition were examined by microstructural and microhardness analyses. Based on the analysis, it has been observed that the macroscopic mechanical behaviour of the composite is influenced by several factors including the manufacturing process, the processing conditions, the inter-particle distance, as well as the mean size and the percentage of reinforcement.


2012 ◽  
Vol 217-219 ◽  
pp. 71-74
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Shu Yong Jiang ◽  
Hong Cheng

Iron matrix composite reinforced with VC reinforcements was produced by in situ synthesis technique. The microstructure of the composites was characterized by X-ray diffraction and scanning electron microscopy. The micrographs revealed the morphology and distribution of the reinforcements. The results show that the composite consists of VC carbide as the reinforcing phase and α-Fe as the matrix. The distribution of spherical VC particulates in iron matrix is uniform, and the matrix microstructure of Fe-VC composite is pearlite.


1998 ◽  
Vol 554 ◽  
Author(s):  
Haein Choi-Yim ◽  
Ralf Busch ◽  
William L. Johnson

AbstractBulk metallic glass matrix composites are processed and investigated by X-ray diffraction, DSC, optical microscopy, SEM, microprobe, TEM, and mechanical testing. Ceramics such as SiC, WC, or TiC, and the metals W or Ta are introduced as reinforcements into the metallic melt. The metallic glass matrix remains amorphous after adding up to 30 vol% of particles. The thermal stability of the matrix does not deteriorate after adding the particles. ZrC layers form at the interfaces between the bulk metallic glasses and the WC or SiC particles. Si and W are released into the matrix in which Si enhanced the glass forming ability. The composites are tested in compression and tension experiments. Compressive strain to failure increases by over 300% compared to the unreinforced Zr57Nb5Al10Cu15.4Ni12.6 and the energy to break of the tensile samples increases by over 50% adding 15 vol. % W.


2000 ◽  
Vol 644 ◽  
Author(s):  
Ersan Üstündag ◽  
Danut Dragoi ◽  
Bjorn Clausen ◽  
Donald Brown ◽  
Mark A. M. Bourke ◽  
...  

AbstractComposites consisting of a bulk metallic glass (BMG) matrix and metallic fibers or particulates have been shown to exhibit superior mechanical properties as compared to monolithic BMGs. To understand the role of reinforcements in this improvement, it is necessary to investigate the state of internal stresses in these composites. These stresses arise from the thermal expansion mismatch between the reinforcement and the matrix, as well as the elastic and plastic incompatibilities between the two phases. Neutron diffraction and synchrotron X-ray diffraction were used to measure these mismatch-induced stresses in BMG-matrix composites with various reinforcements: continuous W fibers, W or Ta particles, and dendritic, in-situ formed precipitates. The results are compared to numerical and analytical predictions of internal stresses.


2017 ◽  
Vol 51 (30) ◽  
pp. 4165-4175 ◽  
Author(s):  
Klaudia Lichtenberg ◽  
Eric Orsolani-Uhlig ◽  
Ralf Roessler ◽  
Kay André Weidenmann

The reinforcement of a soft matrix material with hard particles is an established strategy to develop materials with tailored properties. In this regard, using metallic glasses with high crystallization temperatures, e.g. in the system NiNbX (X = Sn, Ta), for composites produced by liquid metal infiltration is a novel approach. The current work deals with the characterization of such metallic glass particle-reinforced AlSi10Mg-based metal matrix composites manufactured by gas pressure infiltration. Processing–structure–property relations were investigated with a special focus on the influence of an additional heat treatment on the metal matrix composite’s properties. Metallographic methods were used to investigate infiltration quality, particle distribution within the composite and the composite’s microstructure. Moreover, X-ray diffraction measurements, elastic analysis using ultrasonic spectroscopy and compression tests were performed to analyze its properties. The X-ray diffraction results indicate that there is no crystallization of the glass during processing. Metallographic investigations show that the flakes are arranged in a layered structure within the composite. The embedding of metallic glass flakes leads to an increase in Young’s modulus and compressive strength in comparison to the unreinforced material. The composite’s strength can be further increased by a heat treatment.


2010 ◽  
Vol 97 (17) ◽  
pp. 171910 ◽  
Author(s):  
J. W. Qiao ◽  
E. W. Huang ◽  
F. Jiang ◽  
T. Ungár ◽  
G. Csiszár ◽  
...  

2014 ◽  
Vol 612 ◽  
pp. 151-155 ◽  
Author(s):  
S Dhinakaran ◽  
T.V. Moorthy

Aluminium matrix composites (AMCs) play a vital role as advanced engineering materials due to their excellent mechanical properties like light weight, strength, wear resistance, toughness. This work focuses on the fabrication of aluminium (AA6061) matrix composites reinforced with 3%, 6% and 9% B4C particle of 104μm using stir casting method. The wettability of B4C particles in the matrix has been improved by adding K2TiF6flux in to the molten metal. The microstructure and mechanical properties of the fabricated AMCs are analyzed. Uniform distribution of B4C particle in the matrix was confirmed using scanning electron microscope (SEM) images. It was found that the tensile strength and hardness of the fabricated AMCs increases with increased B4C particle content.


2002 ◽  
Vol 754 ◽  
Author(s):  
Haein Choi-Yim ◽  
Jan Schroers ◽  
William L. Johnson

ABSTRACTTungsten wire or particle reinforced metallic glass matrix composites are produced by infiltrating liquid Zr57Nb5Al10Cu15.4Ni12.6 (Vit106) into tungsten reinforcements at 1150 K and at 1425 K. X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy are carried out to characterize the composite. The matrix of the composite processed at 1150 K is mostly amorphous, with some embedded crystals. During processing, tungsten dissolves in the glass-forming melt and upon quenching precipitates over a relatively narrow zone near the interface between the tungsten and matrix. In the composites processed at 1425 K, tungsten dissolves in the melt and diffuses through the liquid medium, and then reprecipitates upon quenching. The faster kinetics at this high temperature results uniform distribution of the crystals throughout the matrix. Mechanical properties of the differently processed composites containing wires and particles are compared and discussed. The composites exhibit a plasticity of up to 16 % without sacrificing the high strength to failure that is comparable to monolithic Vit 106.


Sign in / Sign up

Export Citation Format

Share Document