Reconstruction of Human Skeleton Model Based on Selective Laser Sintering

2011 ◽  
Vol 189-193 ◽  
pp. 3659-3663 ◽  
Author(s):  
Peng Cheng Wang ◽  
De Qun Li ◽  
Jin Long Zhao ◽  
Zhi Yan Zhen ◽  
Liang Ming Yan

Based on CT data of the lesion of an orthopedic patient with knee, Mimics13.1, Magics9.5 can be used for the medical image processing. The CT image data were filtered, interpolated, sharpen, the interest region was extracted by the application of threshold segmentation method and was grown. The three dimension model of patient’s skeleton is reconstructed. Based on selective laser sintering, the digit model of patient’s skeleton reconstructed can be accurately transformed into the object model of the individual matching skeleton. The results indicated that the contour of reconstructed knee-joint bone object model were very coincident, and symmetric with knee-joint bone defect.

2014 ◽  
Vol 941-944 ◽  
pp. 2194-2197
Author(s):  
Jie Liu

Experiments on selective laser sintering of iron based alloy and nano-Al2O3 ceramic bulk materials are carried out and effect of sintering parameters on the process is analyzed systematically. A reasonable selective laser sintering technique which can be used to fabricate parts with free shape is obtained and verified with a multilayer sintering experiment. The component and the microstructure of the sintering production is tested. The influences of parameters and the amount of nano-Al2O3 on microstructure and microhardness of the sintering parts are studied. Laser sintering iron-based alloy experiments show that: microhardness has been noticeably improved. It is indicated that with the selective laser sintering technique obtained above, nano-alumina can be processed to manufacture three-dimension parts with free shape. With the addition of Al2O3 and the increase of composite parts of the grain gradually thinning, microhardness gradually improved nanocomposite parts for the microstructure of the dendrite skeleton-shaped crystal and the plane together, the internal Al2O3 dispersion organizations to strengthen the implicit crystal martensite and ferrite mixed organizations.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1165
Author(s):  
Shanmugapriya Survarachakan ◽  
Egidijius Pelanis ◽  
Zohaib Amjad Khan ◽  
Rahul Prasanna Kumar ◽  
Bjørn Edwin ◽  
...  

Colorectal cancer (CRC) is the third most common type of cancer with the liver being the most common site for cancer spread. A precise understanding of patient liver anatomy and pathology, as well as surgical planning based on that, plays a critical role in the treatment process. In some cases, surgeons request a 3D reconstruction, which requires a thorough analysis of the available images to be converted into 3D models of relevant objects through a segmentation process. Liver vessel segmentation is challenging due to the large variations in size and directions of the vessel structures as well as difficult contrasting conditions. In recent years, deep learning-based methods had been outperforming the conventional image analysis methods in the field of medical imaging. Though Convolutional Neural Networks (CNN) have been proved to be efficient for the task of medical image segmentation, the way of handling the image data and the preprocessing techniques play an important role in segmentation. Our work focuses on the combination of different vesselness enhancement filters and preprocessing methods to enhance the hepatic vessels prior to segmentation. In the first experiment, the effect of enhancement using individual vesselness filters was studied. In the second experiment, the effect of gamma correction on vesselness filters was studied. Lastly, the effect of fused vesselness filters over individual filters was studied. The methods were evaluated on clinical CT data. The quantitative analysis of the results in terms of different evaluation metrics from experiments can be summed up as (i) each of the filtered methods shows an improvement as compared to unenhanced with the best mean DICE score of 0.800 in comparison to 0.740 for unenhanced; (ii) applied gamma correction provides a statistically significant improvement in the performance of each filter with improvement in mean DICE of around 2%; (iii) both the fused filtered images and fused segmentation give the best results (mean DICE score of 0.818 and 0.830, respectively) with the statistically significant improvement compared to the individual filters with and without Gamma correction. The results have further been verified by qualitative analysis and hence show the importance of our proposed fused filter and segmentation approaches.


2019 ◽  
Vol 25 (11) ◽  
pp. 1249-1264 ◽  
Author(s):  
Amoljit Singh Gill ◽  
Parneet Kaur Deol ◽  
Indu Pal Kaur

Background: Solid free forming (SFF) technique also called additive manufacturing process is immensely popular for biofabrication owing to its high accuracy, precision and reproducibility. Method: SFF techniques like stereolithography, selective laser sintering, fused deposition modeling, extrusion printing, and inkjet printing create three dimension (3D) structures by layer by layer processing of the material. To achieve desirable results, selection of the appropriate technique is an important aspect and it is based on the nature of biomaterial or bioink to be processed. Result & Conclusion: Alginate is a commonly employed bioink in biofabrication process, attributable to its nontoxic, biodegradable and biocompatible nature; low cost; and tendency to form hydrogel under mild conditions. Furthermore, control on its rheological properties like viscosity and shear thinning, makes this natural anionic polymer an appropriate candidate for many of the SFF techniques. It is endeavoured in the present review to highlight the status of alginate as bioink in various SFF techniques.


2019 ◽  
Vol 9 (7) ◽  
pp. 1308 ◽  
Author(s):  
Rob Kleijnen ◽  
Manfred Schmid ◽  
Konrad Wegener

This work describes the production of a spherical polybutylene terephthalate (PBT) powder and its processing with selective laser sintering (SLS). The powder was produced via melt emulsification, a continuous extrusion-based process. PBT was melt blended with polyethylene glycol (PEG), creating an emulsion of spherical PBT droplets in a PEG matrix. Powder could be extracted after dissolving the PEG matrix phase in water. The extrusion settings were adjusted to optimize the size and yield of PBT particles. After classification, 79 vol. % of particles fell within a range of 10–100 µm. Owing to its spherical shape, the powder exhibited excellent flowability and packing properties. After powder production, the width of the thermal processing (sintering) window was reduced by 7.6 °C. Processing of the powder on a laser sintering machine was only possible with difficulties. The parts exhibited mechanical properties inferior to injection-molded specimens. The main reason lied in the PBT being prone to thermal degradation and hydrolysis during the powder production process. Melt emulsification in general is a process well suited to produce a large variety of SLS powders with exceptional flowability.


Sign in / Sign up

Export Citation Format

Share Document