Coagulation Method for Preparing Antimony-Doped Tin Oxide (ATO)/Poly(methyl Methacrylate) Nanocomposites and their Electrical Conductivity and Thermal Stability

2011 ◽  
Vol 194-196 ◽  
pp. 610-613 ◽  
Author(s):  
Bing Hai Dong ◽  
Tao Jiang ◽  
Zu Xun Xu ◽  
Hong Bing Lu ◽  
Shi Min Wang

A coagulation method providing a better dispersion of nano-Antimony-Doped Tin Oxide (ATO) in a polymer matrix was used to produce nano-ATO/poly(methyl methacrylate) (PMMA) composites. Scanning electron microscopy showed an improved dispersion of nano-ATO in the PMMA matrix, which is a key factor to determine the composite performance. Moreover, the PMMA with the addition of nano-ATO showed improved electrical conductivity and thermal stability.

2011 ◽  
Vol 335-336 ◽  
pp. 49-53 ◽  
Author(s):  
Lin Lei ◽  
Jian Hui Qiu ◽  
Xue Li Wu ◽  
Yang Zhao ◽  
Eiichi Sakai

Graphene-poly(methyl methacrylate) (GNS-PMMA) composites were prepared by two methods. Graphite oxide nanosheet-poly(methyl methacrylate) (GO-PMMA) composites were prepared of methyl methacrylate monomer and the presence of graphite oxide (GO). Then the GO-PMMA composites were reduced to graphene nanosheet-poly(methyl methacrylate) by using hydrazine hydrate. The obtained composites were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The composite exhibited conductivities in the 1.58×10-9-4.21 S/cm range, depending on the amounts of graphite oxide and PMMA.


2017 ◽  
Vol 54 (1) ◽  
pp. 41-44 ◽  
Author(s):  
Maria Adina Vulcan ◽  
Celina Damian ◽  
Paul Octavian Stanescu ◽  
Eugeniu Vasile ◽  
Razvan Petre ◽  
...  

This paper deals with the synthesis of polyurea and its use as polymer matrix for nanocomposites reinforced with multi-walled carbon nanotubes (MWCNT). Two types of materials were obtained during this research, the first cathegory uses the polyurea as matrix and the second one uses a mixture between epoxy resin and polyurea. The nanocomposites were characterized by Thermogravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA), Scanning Electron Microscopy (SEM) and Tensile Tests .The elastomeric features of nanocomposites were highlighted by the results which showed low value of Tg. Also higher thermal stability with ~40oC compared with commercial products (M20) were observed, but lower mechanical properties compared to neat polyurea.


2018 ◽  
Vol 38 (7) ◽  
pp. 641-647
Author(s):  
Jean Aimé Mbey ◽  
Fabien Thomas ◽  
Sandrine Hoppe

Abstract In the present study, a combined use of photonic microscopy, scanning electron microscopy and 3D X-ray tomography is carried out in order to analyze the dispersion and the distribution of raw and dimethyl sulfoxide (DMSO)-intercalated kaolinite used as filler in cassava starch-based films. It is shown that the association of these techniques allows a valuable analysis of clay dispersion in polymer-clay composite films. In the case of kaolinite-starch composite films on which this study is focused, it is obvious that previous intercalation of kaolinite with DMSO is an efficient way to improve dispersion and distribution of kaolinite in a starch polymer matrix.


Author(s):  
Yuri V. Pakharukov ◽  
Farid K. Shabiev ◽  
Ruslan F. Safargaliev ◽  
Boris S. Yezdin ◽  
Valery V. Kalyada

Graphene, due to its two-dimensional structure, has some unique properties. For example, the thermal conductivity and electrical conductivity of graphene are an order of magnitude higher than the thermal conductivity and electrical conductivity of copper. For this reason, graphene-based nanofluids are now used in many industries. Due to the effect of self-organization of graphene nanoparticles with hydrocarbon molecules, the use of graphene has become possible in the oil industry. Graphene-based nanofluids are used as a displacement fluid to increase the oil recovery coefficient. The displacing ability of graphene-based nanofluids is concentration dependent. An increase in the concentration of nanoparticles entails an increase in viscosity, which negatively affects the performance characteristics of the nanofluid. This problem is partially solved due to the synergistic effect, hybrid nanofluids consisting of nanoparticles of graphene and metals or carbides enhance the displacing ability. Using atomic force microscopy, scanning electron microscopy and molecular modelling methods, this work has studied the formation of supramolecular structures that form a transition region at the oil-nanofluid interface with low surface tension as a result of a synergistic effect in the interaction of graphene planar nanoparticles and silicon carbide nanoparticles covered with graphene layers (Core-shell). The model experiments on a Hele-Shaw cell have shown that in a porous medium, such hybrid nanofluids have a high displacement ability of residual oil. At the same time, the oil — nanofluid interface remains stable, without the formation of viscous fingers. During the study by scanning electron microscopy, a transition region was observed, in the structuring of which the nanoparticles were directly involved. The displacement efficiency of a hybrid nonofluid depends on the concentration of nanoparticles and their interaction.


Biosensors ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 21 ◽  
Author(s):  
Isabel Sayago ◽  
Manuel Aleixandre ◽  
José Pedro Santos

Tin oxide nanofibres (NFs) are used as nanosensors in electronic noses. Their performance is compared to that of oxide commercial chemical sensors for pollutant detection. NFs were grown by electrospinning and deposited onto silicon substrates with integrated micro-hotplates. NF morphology was characterized by scanning electron microscopy (SEM). The NFs presented high sensitivity to NO2 at low temperature.


2013 ◽  
Vol 467 ◽  
pp. 3-7
Author(s):  
Hui Fen Yang ◽  
Lin Fei Lu ◽  
Bei Ping Jiang ◽  
Jin Long Zhang

Based on analyzing of chemical composition, mineral composition and thermal stability of red mud, preparation of ceramisite, using anthracite added as foaming agent, was investigated. Internal structure was observed by scanning electron microscopy (SEM). The results showed the bulk density of ceramisite was obviously reduced by anthracite added. The ceramisite with bulk density of 1.30g/cm3, water absorption rate£ ̈WAR£©of 2.98% and cylinder compressive strength £ ̈CCS£©of 9.48 MPa was obtained when weight ratio of red mud/waste glass/bentonites/anthracite was at 73:15:11:1. Majority of porosity in ceramisite was closed based on SEM. The porosity of ceramisite was much higher when anthracite was added as foaming agent than only calcite in red mud was used as foaming agent. The bulk density of the former was lower than that of the latter.


RSC Advances ◽  
2019 ◽  
Vol 9 (54) ◽  
pp. 31583-31593 ◽  
Author(s):  
Ling Zhao ◽  
Chunxia Zhao ◽  
Min Wu ◽  
Yuntao Li ◽  
Hui Li ◽  
...  

Phenolphthalein type polyphosphazene (PZPT) microspheres were synthesized by an ultrasound assisted precipitation polymerization method, and their structures were confirmed by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document