Photocatalytic and Antibacterial Properties of TiO2 Composite Thin Films Coated on 304 Stainless Steel Substrate Synthesized at Low Temperature

2011 ◽  
Vol 214 ◽  
pp. 444-449
Author(s):  
Natthapong Muangtrairat ◽  
Vishnu Rachpech ◽  
Lek Sikong

This paper describes the photoactive and antibacterial properties of TiO2, Fe3+/TiO2 and N/TiO2 thin films on 304 stainless steel substrate that prepared by a sol-gel and dip coating methods. Anatase phase crystalline together with an amorphous phase was formed after refluxed at 100W for 2h using a domestic microwave oven followed by oven heating in low temperature range 100-250°C for 1 h. The adhesion between thin film and stainless steel substrate is strong and films thickness observed by SEM were about 700~1000 nm. FT-IR spectra of as-prepared TiO2 powders reveal hydroxyl radical on TiO2 surfaces, leading to promotion of photocatalytic reaction of the films. Photocatalytic activity was determined by means of degradation of methylene blue solution under UV irradiation and antibacterial efficiency was evaluated by inactivation of E.coli. The photocatalytic reaction rate can be expressed as an exponential equation. TiO2 and TiO2 composite thin films exhibited high photoactive and antibacterial properties under UV irradiation comparing to control. E.coli was killed about 80% and 95% during treatment with UV for 1 and 3 h, respectively.

2016 ◽  
Vol 23 (1) ◽  
pp. 70-81 ◽  
Author(s):  
Kristian Myhre ◽  
Jonathan Burns ◽  
Harry Meyer ◽  
Nathan Sims ◽  
Rose Boll

2017 ◽  
Vol 69 (2) ◽  
pp. 182-189
Author(s):  
Lubomir Krabac ◽  
Vladimir Pejaković ◽  
Vladislav Drinek ◽  
Nicole Dörr ◽  
Ewald Badisch

Purpose The purpose of this paper is to study the friction and wear behavior of germanium (Ge) thin films deposited by low-pressure chemical vapor deposition method on a chromium (Cr)-nickel (Ni) stainless steel substrate after being exposed to relatively mild sliding conditions (low loads and sliding distances). Design/methodology/approach Wear and friction experiments were conducted with a 100Cr6 steel ball sliding against flat Ge thin-film-coated stainless steel sheets (ball-on-flat microtribometer, no lubricant, normal loads of 50-100 mN, initial Hertzian contact pressures of 385-485 MPa, total sliding distance up to 200 mm and room temperature). Findings Scanning electron microscopy results revealed that prepared Ge thin films consisted of two different morphologies: curved nanowires and cone-shaped nano-/microdroplets. Regarding friction and wear characteristics of the investigated samples, the substrates coated with Ge thin films did not affect the coefficient of friction significantly by load. The wear of the base material (Cr-Ni stainless steel) was not observed under the mentioned experimental conditions (see the “Design/methodology/approach” section); however, with increased sliding distance and/or applied load, a rupture of the Ge film and an exposure of the stainless steel substrate to the 100Cr6 ball can be expected. Furthermore, the observations suggest that the smearing of Ge nano- and microstructures, plastically deformed during tribotesting, over the surface exposed to the sliding contact is the dominant tribological process. Originality/value For the first time, the tribological interaction between Ge thin film and steel surface was investigated under dry sliding conditions using a ball-on-flat microtribometer, and the obtained results provide a useful base for the further research on tribology of Ge-based thin films.


2016 ◽  
Vol 616 ◽  
pp. 842-849 ◽  
Author(s):  
Saara Heinonen ◽  
Matti Kannisto ◽  
Juha-Pekka Nikkanen ◽  
Elina Huttunen-Saarivirta ◽  
Matti Karp ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 583 ◽  
Author(s):  
Pengxian Zhang ◽  
Yibin Pang ◽  
Mingwei Yu

WC-reinforced Ni60 composite coatings with different types of WC particles were prepared on 304 stainless steel surface by laser cladding. The influences of spherical WC, shaped WC, and flocculent WC on the microstructures and properties of composite coatings were investigated. The results showed that three types of WC particles distribute differently in the cladding coatings, with spherical WC particles stacking at the bottom, shaped WC aggregating at middle and lower parts, with flocculent WC particles dispersing homogeneously. The hardnesses, wear resistances, corrosion resistances, and thermal shock resistances of the coatings are significantly improved compared with the stainless steel substrate, regardless of the type of WC that is added, and especially with regard to the microhardness of the cladding coating; the addition of spherical or shaped WC particles can be up to 2000 HV0.05 in some areas. Flocculent WC, shaped WC, and spherical WC demonstrate large to small improvements in that order. From the results mentioned above, the addition of flocculent WC can produce a cladding coating with a uniform distribution of WC that is of higher quality compared with those from spherical WC and shaped WC.


Sign in / Sign up

Export Citation Format

Share Document