Utilization of a Novel Extracellular Biopolymer Produced from Bacillus cereus B-11 for the Biosorption of Cd(II) from Aqueous Phase

2011 ◽  
Vol 230-232 ◽  
pp. 1110-1113
Author(s):  
Yan Li Mao ◽  
Xiao Yan Ding ◽  
Hui Li Zhu ◽  
Fang Xia

The study described the sorption of Cd(II) by a novel extracellular biopolymer (B-11) produced from Bacillus cereus B-11. The effect of experimental parameters such as pH, initial concentration and contact time, sorbent dosage on the sorption was studied. The langmuir isotherm better fitted the sorption data, the maximum adsorption capacity was 80.64 mg.g-1. The kinetic rates were best fitted to the pseudo-second-order model. It was concluded that the prepared B-11 can be used as an effective and environmentally friendly biosorbent for the removal of Cd(II) ions from aqueous solution.

2012 ◽  
Vol 66 (8) ◽  
pp. 1699-1707 ◽  
Author(s):  
A. K. Giri ◽  
R. K. Patel ◽  
P. C. Mishra

In this work, the biosorption of As(V) from aqueous solutions by living cells of Bacillus cereus has been reported. The batch biosorption experiments were conducted with respect to biosorbent dosage 0.5 to 15 g/L, pH 2 to 9, contact time 5 to 90 min, initial concentration 1 to 10 mg/L and temperature 10 to 40 °C. The maximum biosorption capacity of B. cereus for As(V) was found to be 30.04 at pH 7.0, at optimum conditions of contact time of 30 min, biomass dosage of 6 g/L, and temperature of 30 ± 2 °C. Biosorption data were fitted to linearly transformed Langmuir isotherms with R2 (correlation coefficient) >0.99. Bacillus cereus cell surface was characterized using AFM and FTIR. The metal ions were desorbed from B. cereus using both 1 M HCl and 1 M HNO3. The pseudo-second-order model was successfully applied to predict the rate constant of biosorption.


2013 ◽  
Vol 684 ◽  
pp. 194-197
Author(s):  
Yi Ke Li ◽  
Bing Lu Zhao ◽  
Wei Xiao ◽  
Run Ping Han ◽  
Yan Qiang Li

The effect of contact time and the determination of the kinetic parameters of adsorption of methyl orange (MO) from aqueous solution onto Iron-Oxide-Coated-Zeolite (IOCZ) powder are important in understanding the adsorption mechanism. The effect of contact time on adsorption quantity was studied at different initial concentration and temperature, respectively. The pseudo-second-order model was adopted to fit the experimental data using non-linear regressive analysis and it was used to predict the adsorption behavior. The results showed that the process of adsorption MO was endothermic and chemisorption. The pore diffusion was not significant.


2018 ◽  
Vol 77 (5) ◽  
pp. 1313-1323 ◽  
Author(s):  
Jianjun Zhou ◽  
Xionghui Ji ◽  
Xiaohui Zhou ◽  
Jialin Ren ◽  
Yaochi Liu

Abstract A novel magnetic bio-adsorbent (MCIA) was developed, characterized and tested for its Cd(II) removal from aqueous solution. MCIA could be easily separated from the solution after equilibrium adsorption due to its super-paramagnetic property. The functional and magnetic bio-material was an attractive adsorbent for the removal of Cd(II) from aqueous solution owing to the abundant adsorption sites, amino-group and oxygen-containing groups on the surface of Cyclosorus interruptus. The experimental results indicated that the MCIA exhibited excellent adsorption ability and the adsorption process was spontaneous and endothermic. The adsorption isotherm was consistent with the Langmuir model. The adsorption kinetic fitted the pseudo-second-order model very well. The maximum adsorption capacity of Cd(II) onto MCIA was 40.8, 49.4, 54.6 and 56.6 mg/g at 293, 303, 313 and 323 K, respectively. And the MCIA exhibited an excellent reusability and impressive regeneration. Therefore, MCIA could serve as a sustainable, efficient and low-cost magnetic adsorbent for Cd(II) removal from aqueous solution.


2013 ◽  
Vol 726-731 ◽  
pp. 1922-1925 ◽  
Author(s):  
Lian Ai ◽  
Xue Gang Luo ◽  
Xiao Yan Lin ◽  
Si Zhao Zhang

The sorptive potential of sunflower straw (≤125 μm) for Sr2+ from aqueous solution was evaluated. Batch adsorption experiments were carried out as a function of solution pH, adsorbent dosage, Sr2+ concentration and contact time. FT-IR spectra and SEM of sunflower straw were employed to explore the functional groups available for the binding of Sr2+ and morphology of the adsorbent. Maximum uptake capacity of sunflower straw was 17.48 mg/g occurred at around pH 3-7. The adsorption equilibrium can be achieved within 5 min and kinetic data were fitted well to pseudo-second-order model. The Langmuir and Freundlich models were applied to describe isotherm sorption data. The Langmuir model gave an acceptable fit than Freundlich model.


2016 ◽  
Vol 17 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Tianli Han ◽  
Xiaoman Zhang ◽  
Xiangqian Fu ◽  
Jinyun Liu

Chitosan nanoparticle (CS NP)-modified MnO2 nanoflakes were presented as a novel adsorbent for fast adsorption of Pb(II) from aqueous solution. Loading dense CS NPs onto mono-dispersive flower-like MnO2 nanostructures reduces the overlap of CS during adsorption, and thus improves the contact of functional adsorption sites on the surface of MnO2 nanoflakes with heavy metal ions. The results show that the removal efficiency of the nanoadsorbents reaches up to 93% in 3 min for Pb(II). In addition, the maximum adsorption capacity, effects of adsorbent dosage and pH value, and the reusability were investigated. The kinetic process and adsorption isotherm fit well with the pseudo-second-order model and Langmuir model, respectively. These findings provide a potential strategy to address the overlap issue of some common nanoadsorbents.


2014 ◽  
Vol 692 ◽  
pp. 149-155 ◽  
Author(s):  
Jun Ren ◽  
Dan Xu ◽  
Ling Tao ◽  
Zhao Wen Fu

The adsorption behavior of Zn (II) by attapulgite were studied in the paper, The effects of adsorbent dose. Contact time, ionic strength and temperature on the adsorption were investigated. The maximum adsorption capacity is 4.129 mg.g-1 at 333 K. The kinetic study indicated that the adsorption was a pseudo-second-order process. The adsorption was well fitted by the Langmuir adsorption isotherm model. The results indicated that the sorption of Zn (II) by attapulgite was a spontaneous process, and the sorption was endothermic.


2009 ◽  
Vol 60 (2) ◽  
pp. 467-474 ◽  
Author(s):  
K. L. Lv ◽  
Y. L. Du ◽  
C. M. Wang

Carboxylated chitosan (CKCTS) was prepared for the removal of Cd(II), Pb(II), and Cu(II) from aqueous solutions. The effects of experimental parameters such as pH value, initial concentration, contact time and temperature on the adsorption were studied. From the results we can see that the adsorption capacities of Cd(II), Pb(II), and Cu(II) increase with increasing pH of the solution. The kinetic rates were best fitted to the pseudo-second-order model. The adsorption equilibrium data were fitted well with the Langmuir isotherm, which revealed that the maximum adsorption capacities for monolayer saturation of Cd(II), Pb(II), and Cu(II) were 0.555, 0.733 and 0.827 mmol/g, respectively. The adsorption was an exothermic process.


2018 ◽  
Vol 43 (6) ◽  
pp. 623-631 ◽  
Author(s):  
Reza Mahini ◽  
Hossein Esmaeili ◽  
Rauf Foroutan

Abstract Objective The presence of dyes in the water is toxic and harmful to human body so, it must be removed from the water. In the present study, the removal of methyl violet (MV) from aqueous solutions using brown algae “Padina sanctae-crucis” was investigated. Materials and methods The rate of adsorption was investigated under various parameters such as contact time (5–200), pH (2–11), dye concentration (10–60 mg/L), amount of adsorbent (0.25–5 g/L) and temperature (25–45°C). Results The maximum adsorption was achieved in 10 mg/L, pH=8 and adsorbent dose 2 g/L and 80 min contact time for removal of MV from aqueous solutions. Kinetic studies showed that the pseudo second-order model describes adsorbent kinetic behavior better. Besides, experimental data have been modeled using Langmuir and Freundlich isotherms and the results showed that both models are proper to describe adsorption isotherm behavior. In addition, the equilibrium study shows that the adsorption was physical and favorable. Moreover, a thermodynamic study revealed that the adsorption process is exothermic and spontaneously in nature. Furthermore, Maximum adsorption capacity using adsorbent was 10.02 mg/g. Conclusions It could be concluded that the P. sanctae-crucis biomass is a good adsorbent for removing MV dyes from aqueous solutions.


2011 ◽  
Vol 63 (7) ◽  
pp. 1389-1395 ◽  
Author(s):  
S. Aber ◽  
D. Salari ◽  
B. Ayoubi Feiz

Batch sorption studies using almond shell as an sorbent for the removal of Cu (II) from aqueous solutions, showed that copper removal decreased from 74.9% to 45.6% with increasing its concentration from 10 to 70 ppm. The removal increased with increasing sorbent dose and pH, respectively. Copper removal was obtained equal to 63.7%, 69.6% and 58.6% at 26˚C, 40˚C and 55˚C. The sorption of Cu (II) on almond shell was also optimized by Taguchi method. The optimized conditions were the sorbent mass of 4 g, the ion initial concentration of 10 ppm, pH 7, the temperature of 40˚C and contact time equal to 60 min. The pH and initial Cu (II) concentration with respectively 32.75% and 31.20% contribution had more influence on the removal of Cu (II). The kinetic data fit pseudo-second-order model with correlation coefficients greater than 0.99 and rate constants in the range of 0.26–7.87 g mg−1 min−1.


2010 ◽  
Vol 178 ◽  
pp. 8-16
Author(s):  
Liang Dong Feng ◽  
Bo Qing Chen ◽  
Ying Ying Shi ◽  
Ying Wei Guo ◽  
Jing Huang ◽  
...  

1, 10-phenanthroline and triethylamine modified palygorskites were prepared by microwave irradiation, and characterized with FT-IR technique. The effects of contact time, adsorbent dosage, and pH value of the initial solution on the adsorption characters of Mn2+ were investigated. The adsorption of Mn2+ from aqueous solutions using 1, 10-phenanthroline or triethylamine modified palygorskites were investigated. Experiment results indicated that 1,10-phenanthroline and triethylamine molecules have been successfully grafted to palygorskite. The adsorption was rapid during the first 5 minuts and equilibrium were attained within 60 minutes in the initial concentration of Mn2+ of 50 and 100 mg•L-1, and fast adsorption in the first 10 minutes and slowly increased with the contact time due to the adsorption of palygorskite. The 1, 10-phenanthroline modified palygorskites had higher adsorption capacity than triethylamine modified palygorskites. Compared with natural palggorskites, the Mn2+ ions adsorption capacities of palggorskite modified by 1, 10-phenanthroline or triethylamine were significantly improved. There were less difference in the adsorption capacity between different dasages of 1, 10-phenanthroline modified palygorskites, but the adsorption capacity of Mn2+ adsorbed onto triethylamine modified palygorskites decreased with increasing the dosages. A Lagergren pseudo-second order model best described the kinetics of adsorption of Mn2+ onto the modified palygorskites.


Sign in / Sign up

Export Citation Format

Share Document