An EIS Study of the Corrosion Behavior of Arc Spraying Al-RE Coating in Salt Spray Test

2011 ◽  
Vol 236-238 ◽  
pp. 1645-1648 ◽  
Author(s):  
Yi Liu ◽  
Shi Cheng Wei ◽  
Yu Jiang Wang ◽  
Bin Shi Xu

The corrosion behavior of Al-RE coating in copper accelerated acetic acid salt spray test (CASS) was studied by electrochemical impedance spectroscopy (EIS). Typical EIS spectral changes were clearly observed during the CASS process. The EIS was shown to be a very useful tool for studying corrosion resistance mechanism. Scanning electron microscope and X-ray energy dispersive spectroscopy were used to analyze the microstructure of Al-RE coatings before and after CASS test. The results revealed that the corrosion behavior of Al-RE coating could be divided into two different stages. In the first stage of CASS, there were two capacitive impedance semicircles in the complex plane plots. The high frequency semicircle responded to barrier layer, the low frequency semicircle responded to the electrochemical reaction of Al-RE coating. In the second stage of CASS, porous layer began to influence the electrochemical behavior.

2020 ◽  
Vol 25 (4) ◽  

The study is examines the assessment of the corrosion-protective properties of zinc-rich coating based on water sodium silicate (ZRC) using the Electrochemical Impedance Spectra (EIS) with AutoLAB PGSTAT204N. The system consists of three electrodes: Ag/AgCl reference electrode in 3 M solution of KCl, auxiliary electrode – Pt (8x8 mm) and working electrodes for determination potential (Ecorr) and impedance measurement, salt spray test method and natural teszzt method at Dam Bay Marine Research Station, Nha Trang, Khanh Hoa, Viet Nam. ZSC can provide good cathodic protection when zinc content is 70% by weight or more. ZSC with a mixing ratio of High Modulus Liquid Sodium Glass / Zinc Powde : 25/75 by weight (working title – TTL-VN) has good corrosion protection after 16 cycles salt spray test and after 18 months natural test in seawater. The paint film has basic parameters as adhesion – 4,41 MPa, flexural strength – 2 mm, pendulum hardness – 0,62 conventional units and initial coating potentia l – 0,96 V Ag/AgCl.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 636 ◽  
Author(s):  
Xu ◽  
Wang ◽  
Chen ◽  
Qiao ◽  
Zhang ◽  
...  

The effect of rare earth oxides on the microstructure and corrosion behavior of laser-cladding coating on 316L stainless steel was investigated using hardness measurements, a polarization curve, electrochemical impedance spectroscopy (EIS), a salt spray test, X-ray diffraction, optical microscopy, and scanning electron microscopy (SEM). The results showed that the modification of rare earth oxides on the laser-cladding layer caused minor changes to its composition but refined the grains, leading to an increase in hardness. Electrochemical and salt spray studies indicated that the corrosion resistance of the 316L stainless steel could be improved by laser cladding, especially when rare earth oxides (i.e., CeO2 and La2O3) were added as a modifier.


RSC Advances ◽  
2017 ◽  
Vol 7 (25) ◽  
pp. 14981-14988
Author(s):  
Yanping Wu ◽  
Shengfa Zhu ◽  
Peng Shi ◽  
Biaojie Yan ◽  
Dingzhou Cai ◽  
...  

The corrosion behavior of Al film coated uranium and bare uranium under neutral salt spray conditions are evaluated.


2018 ◽  
Vol 36 (3) ◽  
pp. 305-322 ◽  
Author(s):  
Sol Roselli ◽  
Cecilia Deyá ◽  
Mariana Revuelta ◽  
Alejandro R. Di Sarli ◽  
Roberto Romagnoli

AbstractThe aim of this paper was to evaluate the performance of two different modified zeolitic minerals as anticorrosion pigments in order to reduce or eliminate zinc phosphate in paints. In the first stage, the selected minerals were characterized and modified with cerium ions to obtain the anticorrosion pigments. Their inhibitive properties were evaluated by means of electrochemical techniques (corrosion potential measurements and polarization curves) employing a steel electrode immersed in the pigments suspensions. In the second stage, solvent-borne paints, with 30% by volume of the anticorrosion pigment, with respect of the total pigment content, were formulated. The performance of the resulting paints was assessed by accelerated (salt spray and humidity chambers) and electrochemical tests (corrosion potential measurements and electrochemical impedance spectroscopy) and compared with that of a control paint with 30% by volume of zinc phosphate. Results obtained in this research suggested that zeolites can be used as carriers for passivating ions in the manufacture of anticorrosion paints with at least reduced zinc phosphate content.


2019 ◽  
Vol 66 (6) ◽  
pp. 819-826
Author(s):  
Khashayar Tabi ◽  
Mansour Farzam ◽  
Davood Zaarei

Purpose Potassium silicate sealer was applied on solvent-cleaned, acid-pickled, dacromet-coated steel to improve its corrosion resistance. The purpose of this paper is to study the corrosion behavior of dacromet-coated steel. Design/methodology/approach Potassium silicate sealer was applied on solvent-cleaned, acid-pickled, dacromet-coated steel to improve its corrosion resistance. Electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and salt spray were carried out. SEM was used to study the morphological appearance of the surface. Findings The EIS behavior indicated that solvent-cleaned dacromet-coated steel sealed with potassium silicate showed that the corrosion current density was 2.664E − 5 A.cm2 which was reduced to 8.752E − 6 A.cm2 and the corrosion rate, which was 2.264E − 2 mm.year−1, was reduced to 7.438E − 3 mm.year−1 in NaCl 3.5 wt.per cent. EIS was used in NaCl 3.5 wt.%, and the Bode plot characteristics showed that the corrosion protection of solvent-cleaned, dacromet-coated steel was enhanced when sealed with potassium silicate. The EDS results of salt-sprayed, solvent-cleaned samples after 10 days indicated that the main corrosion products are composed of SiO2, ZnO and Al2O3. Research limitations/implications The detection of Li element in EDS was not possible because of the device limitation. Originality/value The current paper provides new information about the sealing properties of potassium silicate and its effects on the corrosion resistance of dacromet coating, which is widely used in many industries such as the automobile industry.


2011 ◽  
Vol 291-294 ◽  
pp. 18-23
Author(s):  
Qing Jun Chen ◽  
Lin Li Hu ◽  
Xian Liang Zhou ◽  
Xiao Zhen Hua

The corrosion behavior of Fe44Cr16Mo16C18B6amorphous alloy coating was studied by electrochemical polarization curves and electrochemical impedance spectroscopy (EIS) in different HCl concentration solution at room temperature. Experimental results show that the polarization curves of the coating present a wide passivation range under open circuit potential and icorrincrease from 1.049×10-5A/cm2to 1.487×10-5A/cm2with HCl solution from 0.5M to 2.0M. The EIS of coating are composed of high-frequency inductive loop and low-frequency capacitance arc, which is different from the EIS of other amorphous alloys, the Rt is up to 5789Ω·cm2in 2M HCl solution. The especial equivalent circuit model R(RL)(Q(R(QRW))) can better interpret the corrosion behavior of the amorphous alloy coating.


2017 ◽  
Vol 751 ◽  
pp. 119-124
Author(s):  
Kanokwan Saengkiettiyut ◽  
Pranee Rattanawaleedirojn ◽  
Adisak Thueploy ◽  
Jumpot Wanichsampan ◽  
Yuttanant Boonyongmaneerat

In this work, microstructure and corrosion properties of zinc electroplated steel before and after black chromating was investigated. The test samples were prepared by electrodeposition process, using a commercially-available alkaline electrolyte. Subsequently, the galvanized samples were applied with a black chromate-based passivation layer and a clear top-coat layer. Their microstructures were examined using X-ray diffractometry and scanning electron microscopy. The corrosion resistance of the samples was assessed with the salt spray test, following the ASTM B117, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization in 5 wt.% NaCl solutions. The study showed that zinc electroplated steels exhibit (110) crystallographic orientation. The passivation and top-coat layers did not affect the microstructure of the zinc layer, and covered uniformly on the zinc layer for all sets of samples. The corrosion resistant results obtained from salt spray testing and electrochemical testing revealed that the microstructure of zinc coatings prepared by using different applied current did not influence on their corrosion resistance markedly. While black passivation followed by top coating provided a significant improvement on corrosion resistance of the coatings.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1357 ◽  
Author(s):  
Jaromír Wasserbauer ◽  
Martin Buchtík ◽  
Jakub Tkacz ◽  
Stanislava Fintová ◽  
Jozef Minda ◽  
...  

The corrosion behavior of duplex Ni-P coatings deposited on AZ91 magnesium alloy was studied. The electroless deposition process of duplex Ni-P coating consisted in the preparation of low-phosphorus Ni-P coating (5.7 wt.% of P), which served as a bond coating and high-phosphorus Ni-P coating (11.5 wt.% of P) deposited on it. The duplex Ni-P coatings with the thickness of 25, 50, 75 and 100 µm were deposited on AZ91 magnesium alloy. The electrochemical corrosion behavior of coated AZ91 magnesium alloy was investigated by electrochemical impedance spectroscopy and potentiodynamic polarization method in 0.1 M NaCl. Obtained results showed a significant improvement in the corrosion resistance of coated specimens when compared to uncoated AZ91 magnesium alloy. From the results of the immersion tests in 3.5 wt.% NaCl, 10% solution of HCl and NaOH and 5% neutral salt spray, a noticeable increase in the corrosion resistance with the increasing thickness of the Ni-P coating was observed.


2011 ◽  
Vol 399-401 ◽  
pp. 1972-1975 ◽  
Author(s):  
Hui Min Zhang ◽  
Lin Wu ◽  
Zhao Hui Ouyang ◽  
De Lian Yi ◽  
Qiao Hua ◽  
...  

In this paper, an organic/inorganic molybdenum series Cr-free coating was formed on galvanized steel by simple immersion and its corrosion behavior was compared to that of a typical chromate coating. Molybdate and 1-Hydroxy-ethylidene-1, 1-diphosphonic acid (HEDP) were used as corrosion inhibitor, as well as acrylic resin and silane were used as film-former and coupling agents, respectively. The corrosion behavior of the coatings was evaluated by Neutral salt spray (NSS), Electrochemical impedance spectroscopy (EIS) and Tafel polarization. The surface topography of the samples was observed by Scanning Electron Microscopy (SEM). The results indicated that the corroded area of the Mo-HEDP treatment was only corroded 2% after 72 h spraying, while the corrosion behaviour of Mo-HEDP was closed to that of Cr pretreatment due to the synergistic reaction of molybdate and HEDP. Compared with the film of Cr treatment, Mo-HEDP passivating coating was more environmentally friendly.


Sign in / Sign up

Export Citation Format

Share Document