Adsorption Properties for Superabsorbent of Inverse Suspension Polymerization Poly(acrylate-Co-Acrylamide)

2011 ◽  
Vol 239-242 ◽  
pp. 851-854 ◽  
Author(s):  
Jian Jun Xie ◽  
Na Li ◽  
Kai Huang ◽  
Xin Qiang Han

Superabsorbent polymers are lightly crosslinked, hydrophilic polymer network having many functional groups. The adsorption properties in heavy metal ion solutions using poly(acrylate-co-acrylamide)(PAAM) are investigated. It is found that PAAM has a high uptake to heavy metal ions, and that the adsorption of heavy metal ions is greatly influenced by pH and the initial solution concentrations. The biggest and the smallest amount of adsorption are Cu2+and Cr3+in CuCl2and CrCl3solution, respectively. It was feasible for selective adsorption of the metal ions in the solution onto PAAM hydrogel by controlling the pH values of the mixing solution for CuCl2, FeCl3, CrCl3.Langmiur equatiom can satisfactorily fit for the adsorption of Cu2+while not fit for that of Fe3+and Cr3+.

2019 ◽  
Vol 11 (19) ◽  
pp. 5186 ◽  
Author(s):  
Jing Qian ◽  
Tianjiao Yang ◽  
Weiping Zhang ◽  
Yuchen Lei ◽  
Chengli Zhang ◽  
...  

NH2-Fe2O3 and NH2-Fe2O3/chitosan (NH2-Fe2O3/CS) with excellent physical properties and high adsorption capacities for several heavy metal ions were synthesized using a one-pot hydrothermal method. The materials were characterized by scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Physicochemical properties were determined by the Fourier transform infrared spectra (FTIR) and nitrogen adsorption analysis (Brunauer–Emmett–Teller (BET) method). The results of the characterization studies show that the material is uniformly dispersed and has good crystallinity and well-defined porous particles. The material is mesoporous, and the particles have a specific surface area of 55.41–233.03 m2·g−1, a total pore volume of 0.24–0.54 cm3·g−1, and a diameter of 3.83–17.56 nm. Additional results demonstrate that NH2-Fe2O3 and NH2-Fe2O3/CS are effective adsorbents for the removal of heavy metal ions from solution. In a ternary system, the order of their selective adsorption was determined to be Pb(II) > Cu(II) > Cd(II), and the adsorption rate of Pb(II) was much higher than that of Cu(II) and Cd (II). The metal ion adsorption capacity of NH2-Fe2O3 and NH2-Fe2O3/CS makes them promising adsorbents for wastewater cleanup.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 685
Author(s):  
Ai-Huei Chiou ◽  
Jun-Luo Wei ◽  
Ssu-Han Chen

A novel surface-enhanced Raman scattering (SERS)-based probe to capture heavy metal ion (Zn2+) by bovine serum albumin (BSA) using Si-nanowire (SiNW) arrays with silver nanoparticles (AgNPs) was developed. A layer with AgNPs was deposited on the SiNW surface by RF magnetron sputtering for enhancement of SERS signals. Using a high-resolution transmission electron microscope (HRTEM), the observation reveals that the AgNP layer with depths of 30–75 nm was successfully deposited on SiNW arrays. The Ag peaks in EDS and XRD spectra of SiNW arrays confirmed the presence of Ag particles on SiNW arrays. The WCA observations showed a high affinity of the Ag–SiNW arrays immobilized with BSA (water contact angle (WCA) = 87.1°) and ZnSO4 (WCA = 8.8°). The results of FTIR analysis illustrate that the conjugate bonds exist between zinc sulfate (ZnSO4) and –OH groups/–NH groups of BSA. The resulting SiNWs/Ag NPs composite interfaces showed large Raman scattering enhancement for the capture of heavy metal ions by BSA with a detection of 0.1 μM. BSA and ZnSO4 conjugations, illustrating specific SERS spectra with high sensitivity, which suggests great promise in developing label-free biosensors.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4066
Author(s):  
Xianyuan Fan ◽  
Hong Liu ◽  
Emmanuella Anang ◽  
Dajun Ren

The adsorption capacity of synthetic NaX zeolite for Pb2+, Cd2+, Cu2+ and Zn2+ in single and multi-component systems were investigated. The effects of electronegativity and hydration energy on the selective adsorption, as well as potential selective adsorption mechanism of the NaX zeolite for Pb2+, Cd2+, Cu2+ and Zn2+ were also discussed. The maximum adsorption capacity order of the heavy metals in the single system was Pb2+ > Cd2+ > Cu2+ > Zn2+, and this could be related to their hydration energy and electronegativity. The values of the separation factors (α) and affinity constant (KEL) in different binary systems indicated that Pb2+ was preferentially adsorbed, and Zn2+ presented the lowest affinity for NaX zeolite. The selective adsorption capacities of the metals were in the order, Pb2+ > Cd2+ ≈ Cu2+ > Zn2+. The trend for the selective adsorption of NaX zeolite in ternary and quaternary systems was consistent with that in the binary systems. Pb2+ and Cu2+ reduced the stability of the Si-O-Al bonds and the double six-membered rings in the NaX framework, due to the high electronegativity of Pb2+ and Cu2+ than that of Al3+. The selective adsorption mechanism of NaX zeolite for the high electronegative metal ions could mainly result from the negatively charged O in the Si-O-Al structure of the NaX zeolite, hence heavy metal ions with high electronegativity display a strong affinity for the electron cloud of the oxygen atoms in the Si-O-Al. This study could evaluate the application and efficiency of zeolite in separating and recovering certain metal ions from industrial wastewater.


2021 ◽  
Author(s):  
Rongrong Si ◽  
Daiqi Wang ◽  
Yehong Chen ◽  
Dongmei Yu ◽  
Qijun Ding ◽  
...  

Abstract Heavy metal ion pollutions are of serious threat for our human health, and advanced technologies on removal of heavy metal ions in water or soil are in the focus of intensive research worldwide. Nanocellulose based adsorbents are emerging as an environmentally friendly appealing materials platform for heavy metal ions removal as nanocellulose has higher specific surface area, excellent mechanical properties and good biocompatibility. In this review, we briefly compare the differences of three kinds of nanocellulose and their preparation method. Then we cover the most recent work on nanocellulose based adsorbents for heavy metal ions removal, and present an in-depth discussion of the modification technologies for nanocellulose in assembling high performance heavy ions adsorbent process. By introducing functional groups, such as amino, carboxyl, phenolic hydroxyl, and thiol, the nanocellulose based adsorbents not only remove single heavy metal ions through ion exchange, chelation/complexation/coordination, electrostatic attraction, hydrophobic actions, binding affinity and redox reactions, but also can selectively adsorb multiple heavy ions in water. Finally, some challenges of nanocellulose based adsorbents for heavy metal ions are also prospected. We anticipate that the review supplies some guides for nanocellulose based adsorbents applied in heavy metal ions removal field.


2018 ◽  
Vol 42 (11) ◽  
pp. 8864-8873 ◽  
Author(s):  
Leili Esrafili ◽  
Vahid Safarifard ◽  
Elham Tahmasebi ◽  
M. D. Esrafili ◽  
Ali Morsali

We examined adsorption behavior of some MOFs having different functional groups in their pillar structures for adsorption of some heavy metal ions.


2020 ◽  
Vol 17 (1) ◽  
pp. 74-90 ◽  
Author(s):  
Nader Ghaffari Khaligh ◽  
Mohd Rafie Johan

: A variety of processes were reported for efficient removing of heavy metal from wastewater, including but not limited to ion exchange, reverse osmosis, membrane filtration, flotation, coagulation, chemical precipitation, solvent extraction, electrochemical treatments, evaporation, oxidation, adsorption, and biosorption. Among the aforementioned techniques, adsorption/ion exchange has been known as a most important method for removing heavy metal ions and organic pollutants due to great removal performance, simple and easy process, cost-effectiveness and the considerable choice of adsorbent materials. : Nanotechnology and its applications have been developed in most branches of science and technology. Extensive studies have been conducted to remove heavy metal ions from wastewater by preparation and applications of various nanomaterials. Nanomaterials offer advantages in comparison to other materials including an extremely high specific surface area, low-temperature modification, short intraparticle diffusion distance, numerous associated sorption sites, tunable surface chemistry, and pore size. In order to evaluate an adsorbent, two key parameters are: the adsorption capacity and the desorption property. The adsorption parameters including the absorbent loading, pH and temperature, concentration of heavy metal ion, ionic strength, and competition among metal ions are often studied and optimized. : Several reviews have been published on the application of Graphene (G), Graphene Oxide (GO) in water treatment. In this minireview, we attempted to summarize the recent research advances in water treatment and remediation process by graphene-based materials and provide intensive knowledge of the removal of pollutants in batch and flow systems. Finally, future applicability perspectives are offered to encourage more interesting developments in this promising field. This minireview does not include patent literature.


Sign in / Sign up

Export Citation Format

Share Document