Experimental Study and Numerical Simulation of Rock Mass Seepage Characteristics of Tunnel Engineering

2011 ◽  
Vol 243-249 ◽  
pp. 3538-3545
Author(s):  
Yong Dong Jiang ◽  
Ling Xiong ◽  
Xing Yang Yang ◽  
Quan Zhen ◽  
Zong Ling Yan

In this research, the MTS815 rock mechanics test system , produced by American MTS co., has been conducted with transient method to study the seepage characteristics of rock under different confining pressure. Experiments have obtained the following results: with the confining pressure increased, penetration ability of water in rock decreased, but the start-up pressure gradient increased; permeability of rock decreased with the increase of effective confining pressure, which had negative exponent functional relationship between them. Based on previous researches, the study has established filtration equation which couples with stress field, temperature field and seepage field. Combined with the practical tunnel project, numerical simulated the variation characteristics of deformation of tunnel surrounding rock, pore pressure and seepage field under three fields non-coupling and coupling, numerical simulation obtained: the difference among deformation of surrounding rock, pore pressure and seepage field distribution under the coupling and non-coupling is remarkable, so it must consider the simultaneous action of fluid - solid - heat when we need to research the working of seepage law of groundwater in tunnel rock mass, and the research results enjoy important theoretical significance and practical application value.

Author(s):  
Xiaoming Lou ◽  
Mingwu Sun ◽  
Jin Yu

AbstractThe fissures are ubiquitous in deep rock masses, and they are prone to instability and failure under dynamic loads. In order to study the propagation attenuation of dynamic stress waves in rock mass with different number of fractures under confining pressure, nonlinear theoretical analysis, indoor model test and numerical simulation are used respectively. The theoretical derivation is based on displacement discontinuity method and nonlinear fissure mechanics model named BB model. Using ABAQUS software to establish a numerical model to verify theoretical accuracy, and indoor model tests were carried out too. The research shows that the stress attenuation coefficient decreases with the increase of the number of fissures. The numerical simulation results and experimental results are basically consistent with the theoretical values, which verifies the rationality of the propagation equation.


2015 ◽  
Vol 777 ◽  
pp. 8-12 ◽  
Author(s):  
Lin Zhen Cai ◽  
Cheng Liang Zhang

HuJiaDi tunnel construction of Dai Gong highway is troublesome, the surrounding-rock mass give priority to full to strong weathering basalt, surrounding rock integrity is poor, weak self-stability of surrounding rock, and tunnel is prone to collapse. In order to reduce disturbance, taking advantage of the ability of rock mass, excavation adopt the method of "more steps, short footage and strong support". The excavation method using three steps excavation, The excavation footage is about 1.2 ~ 1.5 m; The surrounding rock bolting system still produce a large deformation after completion of the first support construction, it shows that the adopted support intensity cannot guarantee the stability of the tunnel engineering. Using ABAQUS to simulate tunnel excavation support, optimizing the support parameters of the tunnel, conducting comparative analysis with Monitoring and Measuring and numerical simulation results, it shows that the displacement - time curves have a certain consistency in numerical simulation of ABAQUS and Monitoring and Measuring.


Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 110 ◽  
Author(s):  
Ziheng Sha ◽  
Hai Pu ◽  
Ming Li ◽  
Lili Cao ◽  
Ding Liu ◽  
...  

The seepage action of underground water accelerates the deformation of roadway surrounding rock in deep mines. Therefore, the study of creep characteristics of surrounding rock under seepage action is the basis for the stability control of roadway surrounding rock in deep water-rich areas. In this paper, a seepage-creep coupling test system for complete rock samples was established. Combined with a scanning electron microscopy (SEM) test system, the seepage-creep law of coal measures sandstone and the damage mechanism were revealed. The study results showed that the maximum creep deformation of sandstone under natural and saturation state decreased gradually with the increase of confining pressure, and the maximum creep deformation under saturation state was greater than the corresponding value under natural state when the confining pressure was same. When the confining pressure was constant, the creep deformation, the constant creep deformation rate and the accelerated creep deformation rate of sandstone increased rapidly with the increase of infiltration pressure. With the change of time, the change of permeability parameters went through three cycles; each cycle was divided into two stages, slow change stage and rapid change stage, and the rate of variation increased with the increase of the seepage pressure. Based on the macroscopic and microscopic characteristics of sandstone rupture, the connection between macroscopic and microscopic mechanism on sandstone rupture was established. The results in this paper can provide a theoretical basis for stability control of roadway surrounding rock in water-rich areas.


2013 ◽  
Vol 787 ◽  
pp. 622-625
Author(s):  
Yun Feng Xu ◽  
Zhen Zhong Shen ◽  
Chao Xin Shao

Based on the actual conditions of the project and related experience, the seepage model of diversion tunnel and its surrounding rock mass was built to analyze its seepage stability. The seepage field was calculated by using finite element method (FEM) and cut-off negative pressure method. Two typical cross-sections and working conditions were chosen to evaluate the seepage stability of the surrounding rock mass. According to the results, the seepage gradient is larger when one tunnel is filled with water while the other is empty. The maximum seepage gradient is less than the allowable seepage gradient, so the surrounding rock mass of the diversion tunnel can meet the demand of seepage stability.


2013 ◽  
Vol 438-439 ◽  
pp. 607-611 ◽  
Author(s):  
Da Hai Wang ◽  
Hao Ran Guo ◽  
Hui Zhao ◽  
Yan Wei Guo

Principal influencing factors of the strength of rock mass with weak joints were studied in this paper. Dip angles of weak joints in addition with the confining pressure is studied based on strain-softening/hardening plasticity model. The broken mechanism from the perspective of plastic zone was analyzed. The strength of rock mass with weak joints is mainly under control of the joints occurrence, the joints dip and the rock strength, and great influenced by the confining pressure. A higher strength is obtained with a higher confining pressure, the broken mechanisms varies with different joints dips.


2013 ◽  
Vol 671-674 ◽  
pp. 1131-1134
Author(s):  
Jian Guo Yang ◽  
Li Chuan Chen ◽  
Hong Liang Liao ◽  
Fan Yang

THM coupling is an important process in engineering rock mass. In order to study the mechanism of THM coupling in surrounding rock of deep rock roadway in coalmine, the interactions between THM fields were analyzed, and the governing equations of THM coupling were given. Finally, a model of rock roadway with aquifer is simulated, and the distribution of pore pressure as well as the thermal and stress fields were obtained after some steps of calculation.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Qingteng Tang ◽  
Wenbing Xie ◽  
Xingkai Wang ◽  
Zhili Su ◽  
Jinhai Xu

Zonal disintegration, a phenomenon of fractured zones and intact zones distributed alternately in deep rock mass, is different from the excavation-damaged zone of shallow rock mass. In this study, bonded block model of 3DEC was employed to study the fracture mode and origination condition of zonal disintegration. Initiation, propagation, and coalescence progress of fracture around the roadway boundary under different triaxial stress conditions are elaborated. Numerical simulation demonstrated that zonal disintegration may occur when the direction of maximum principal stress is parallel to the roadway axis. It is interesting to find that the fracture around the roadway boundary traced the line of a spiral line, while slip-line fractures distributed apart from the roadway boundary. The extent of the alternate fracture zone decreased as the confining pressure increased, and alternate fracture zone was no longer in existence when the confining pressure reaches a certain value. Effects of roadway shape on zonal disintegration were also studied, and the results indicated that the curvature of the fracture track line tends to be equal to the roadway boundary in shallow surrounding rock of the roadway, while the fractures in deep surrounding rock seems unaffected by the roadway shape. Those findings are of great significance to support design of deep underground openings.


2012 ◽  
Vol 170-173 ◽  
pp. 1700-1703
Author(s):  
Zhen Wang ◽  
Chu Nan Tang ◽  
Tian Hui Ma ◽  
Lian Chong Li ◽  
Yue Feng Yang

The damage features of surrounding rock in the process of bottom excavation in deep hard rock tunnel were investigated, combining with the actual tunnel data of JinpingⅡHydropower Station and using numerical simulation approach. The evolution mechanism of microfractures initiation, growth and expansion in deep intact rock mass was performed. It’s shown that the fractures caused by bottom excavation develop to deeper surrounding rock due to stress adjustment, and the zone that have been supported also has some damage. The research results provide important references to understand the damage features of surrounding rock in deep hard rock under high geostress.


1997 ◽  
Vol 506 ◽  
Author(s):  
Ming Zhang ◽  
Manabu Takahashi ◽  
Tetsuro Esaki

ABSTRACTNearly impermeable host rocks have been recognized as favorable media for many kinds of underground utilization such as radioactive nuclear waste disposal, storage of oil and LP gas, and CAES. To properly evaluate the ability of a geologic medium to retard transmission of fluids, it is necessary to accurately measure its hydraulic properties, most notably the permeability and specific storage. This paper presents a new flow pump permeability test system capable of testing low-permeability rocks under high confining and high pore pressure conditions, which simulate ground pressures at large depths. The new system was used to test the Inada Granite from Japan. The results of present study show that: 1) both permeability and specific storage of the rock are dependent not only on the confining pressure but also on the pore pressure. They decrease with the increment of the effective confining pressure, i.e., the difference between confining and pore pressures; 2) the permeability and specific storage of Inada Granite range from 10−11 to 10−12 cm/s and 10−6 to 10−7 1/cm, respectively. The flow pump technique with its rigorous theoretical analysis can be used to effectively obtain such low permeabilities within several tens of hours; 3) the storage capacity of flow pump system itself decreases with the increment of fluid pressure within the permeating system.


2011 ◽  
Vol 368-373 ◽  
pp. 2517-2520
Author(s):  
Da Ming Lin ◽  
Yan Jun Shang ◽  
Guo He Li ◽  
Yuan Chun Sun

There are many effective researches about tunnel at home and abroad, because the complexity of design and construction for Y-shape tunnel, in public there is no research about it yet, with the background of nanliang-tunnel which merge two single-beam into a two-lane tunnel as Y-shape. This paper obtains the rock mass mechanics parameters on the basis of nonlinear Hoek-Brown criterion first, and has a numerical simulation according the tunnel construction with FLAC-3D. we arrange many monitor sections in this model and discuss the law of deformation and failure in different section, at last have a comprehensive analysis of displacement, stress, plastic zone of different sites which caused by tunnel construction and discover that: with the distance of two single tunnels decreased, the interaction caused by the merging increase together with the compressive stress, tensile stress. The displacements of surrounding rock increase corresponding, the amplitude of variation is up to 44.8%, After the two-lane tunnel is 15m long, the stress and displacements redistribution of surrounding rock become stable.


Sign in / Sign up

Export Citation Format

Share Document